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Abstract

This manuscript is devoted to constructing complete metrics with constant higher
fractional curvature on punctured spheres with finitely many isolated singulari-
ties. Analytically, this problem is reduced to constructing singular solutions for
a conformally invariant integro-differential equation that generalizes the critical
GJIMS problem. Our proof follows the earlier construction in Ao et al. (Math Ann
369:109-151, 2017), based on a gluing method, which we briefly describe. Our main
contribution is to provide a unified approach for fractional and higher order cases.
This method relies on proving Fredholm properties for the linearized operator around
a suitably chosen approximate solution. The main challenge in our approach is that
the solutions to the related blow-up limit problem near isolated singularities need to
be fully classified; hence we are not allowed to use a simplified ODE method. To
overcome this issue, we approximate solutions near each isolated singularity by a
family of half-bubble tower solutions. Then, we reduce our problem to solving an
(infinite-dimensional) Toda-type system arising from the interaction between the bub-
ble towers at each isolated singularity. Finally, we prove that this system’s solvability
is equivalent to the existence of a balanced configuration.
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1 Introduction

The problem of constructing complete metrics on punctured spheres with the pre-
scribed fractional higher order curvature is longstanding in differential geometry. In
[32], Graham, Jenne, Mason, and Sparling constructed conformally covariant differen-
tial operators P, (g) on a given compact n-dimensional Riemannian manifold (M", g)
forany m € Nsuch that the leading order term of P, (g) is (—Ag)™ withn > 2m. One
can then construct the associated Q-curvature of order 2m by Q2;,(g) = P2, (g)(1).
When m = 1, one recovers the conformal Laplacian

+ 72 R with Oa(g)= "2 R
_— 1 = - s
dn—1 eV ==

Py(g) = —Ag
where Ag is the Laplace-Beltrami operator of g and Ry is its scalar curvature. We
also refer to [3, Appendix A] for the explicit formulae for P>(g), P4(g), and Pg(g).
Subsequently, Grahan and Zworski [33] and Chang and Gonzalez [22] extended these
definitions in the case the background metric is the round metric on the sphere to obtain
(nonlocal) operators P>, (g) of any order o € (0, %) as well as its corresponding Q-
curvature. Once again, the leading order part of P, (g) is (—A,)?, understood as the
principal value of a singular integral operator.

Nevertheless, the expressions for Py, (g) and Qo (g) for a general o € (0, +00)
are far more complicated. Namely, the fractional curvature Q. (g) is defined from
the conformal fractional Laplacian P, (g) as Q2,5(g) = Pas(g)(1). It is a nonlocal
version of the scalar curvature (corresponding to the local case o = 1). The conformal
fractional higher order Laplacian P», (g) is a (nonlocal) pseudo-differential operator of
order 20, which can be constructed from scattering theory on the conformal infinity M"
of a conformally compact Einstein manifold (X!, g*) as a generalized Dirichlet-
to-Neumann operator for the eigenvalue problem

2 2
—AﬁU—gﬂiileo in X,

where U € C*°(X) is the respective extension of u € C°°(M). This construction is a
natural one from the point of view of the AdS/CFT correspondence in Physics, also
known as Maldacena’s duality [45]. We refer the reader to [1, 55] for more details.
In this manuscript, we are restricted to the n-dimensional sphere S C R"+! where
n > 20 and o € (1, +00) equipped with the standard round metric go, which is given
by the pullback of the usual Euclidean metric § under the stereographic projection
Im: S\ {e} - R"\ {0} withe; = (1,0,...,0) € S" denoting its north pole.
For any k € R with 0 < k < n, we seek complete metrics on S" \ A¥ of the form

@ Springer



Complete Metrics with Constant Fractional Higher Order Q-Curvature Page3of77 6

g =u¥729 g0 where A C " is such that #% = N. In order to g to be complete on
S" \ A, one has to impose lim infq(, a) u(p) = +00. Also, we prescribe the resulting
metric to have constant Q,,-curvature, which we normalize to be

n+2s n—2s\""
Qn,a = Q2G (g()) =T r ,

2 2

where I'(z) = fooo 1~ le~7d7 is the standard Gamma function.
Let us now introduce some standard terminology. For any o € (1, 4o00] with
n > 20 and N > 2, we, respectively, denote by

Moag.a(g0) = {g € [go] : g is complete on §" \ A and Q2,5 (8) = Q.o |

and

Mg N(g0) = {g € [go] : g is complete on S" \ A with#A = N and Q»,(g) = ana}
()

the marked and unmarked moduli spaces of complete constant fractional higher order
Q-curvature metrics with isolated singularities. We also denote by sing(g) = A its
respective singular set.

In this fashion, our main theorem in this paper is the following:

Theorem 1 Let o € (1, +00) with n > 20. For any configuration A C S" such that
#A = N with N > 2, there exists a metric g € Moy N(go) satisfying sing(g) = A
and is unmarked nondegenerate. For a generic set of A = {p1, ..., pn}, this solution
is marked nondegenerate, and for such a metric (p1, ..., PN, €1, -.-,EN) € RN@+D
constitute a full set of coordinates in Moy n(g0) near go. In particular, one has

Mag n(g0) # .

Let us derive an analytical formulation for our main result. The family of fractional
higher order curvatures transform nicely under a conformal change. Indeed, for any
g € [g], one has

_n+20
u =2 Prs(gou,

Q2(T(g) = Ry

where Py, (go) : C®° (M) — C°°(M) is the fractional higher order GJIMS operator on
the sphere

~1
(n—1)? 1 (n —1)2 1
Pys(go) :==T _AgU‘I'T-FZO‘—FE r _Ag°+T_20+E ’

where Ay, is the Laplace-Beltrami operator and [g] = {g = ut/n=20g 1y €

C(M)} is the conformal class of g, where u € C3°(M) if and only if u € C°(M)
and u > 0. Furthermore, one has the transformation law

Pay(8)p = U™ Poy (g0)(ugp) forall ¢ € CO(S"\ A),
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6 Page4of77 J.H. Andrade et al.

which means that GIMS operators are conformally covariant. Hence, finding confor-
mal complete metrics g = u?/ (”’2”)go with the prescribed curvature Q25 (g) = On.o
on S" \ A is equivalent to finding smooth positive solutions u € C*(S" \ A) to the
nonlocal higher order geometric PDE

n+2o
Prs (go)u = Cn,au"tﬁ on S\ A,
lim infd(p’A)ﬁo u(p) = +o0,

(Q20.1,50)
where ¢, » > 0 is a normalizing constant and sing(u) := A denotes the singular set.

Next, it will be convenient to transfer the PDE (Q25 A ,g,) to Euclidean space,
which we can do using the standard stereographic projection. In these coordinates,
our conformal metric takes the form g = ud/(n=20) g = (u- usph)4/ (n=20)§_Thus,
u € C®°(R"\ X) given by u = u - ugpp is a positive singular solution to (Q2,, ). As
a notational shorthand, we adopt the convention that u refers to a conformal factor
relating the metric g to the round metric, i.e., g = u#/(n—20) g0, while u refers to a
conformal factor relating the metric g to the Euclidean metric, i.e., g = u*/"=29)§,
with the two related by u = u - uspn. Hence, we aim to construct positive singular
solutions u € C*°(R" \ X) to the following fractional higher order Yamabe equation
with the prescribed isolated singularities

(=A)’u = f;(u) in R"\ X,
u(x) = O(x|* ") as |x] - +o0,

(Q2J,Z)

where 0 € (1, +o00) with n > 20. The subset sing(u) := ¥ C R" is called the
singular set, which is assumed tobe £ = {x1, --- , xx} for some N € N and such that

liminf u(x) = +o0.
d(x,X)—0

We are interested in fast-decaying solutions; we assume the following condition
lim|y|— 400 #(x) = 0. The integral operator on the right-hand side of (Q, ) is the
so-called fractional higher order Laplacian which is defined as

(=A)7 == (=A)" o (=A)",
where m :=[o]ands ;=0 — [0].

Here (—A)" = (—A)o---o(—A) denotes the poly-Laplacian and (—A)*® denotes
the fractional Laplacian defined as

(=AY u(x) :=p.v. /Rn Ks (e = y)u(x) —u(y)ldy,

where IC; : R” x R" — R is a singular potential given by
K (x = ) = kns|x — y 70+ )
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with i n
Ky = T~ 32%5T (5 + s)r(l 9L

The nonlinearity f, : R — R in the left-hand side of (Q2,. x) is given by

Fr(€) = CuqlE]735

2 -2
ey = 22T n+ 2o r n—2o
’ 4 4

is a normalizing constant. We remark that this nonlinearity has critical growth in the
sense of the Sobolev embedding H? (R") — L% (R™), where 2k = nz’éa

Our main result in this manuscript extends this result for the remaining cases. We
are based on the unified approach given by Ao et al. [36] and Jin and Xiong [37]
to prove the existence of solutions to our integral equation, which can be stated as

follows:

where

Theorem2 Let o € (1, 400] with n > 20. For any configuration ¥ = {x1, ..., xn}
with N > 2, one can find a smooth positive singular solution to (Qas. ) such that
sing(u) = X.

In [37], the authors use a dual representation and maximization methods to study
the existence of Emden—Fowler solution on the range o € (0, 5). Although this
representation is enough to prove the existence of blow-up limit solutions by direct
maximization methods, it is unsuitable for our gluing technique. This paper follows
the approach in [36] with the dual equation (Q’2 a,}:)' Nevertheless, we need to give an
alternative proof to describe the local behavior near each isolated singularity in terms
of the bubble tower solution (see Lemma 4.10). This alternative proof is the main
feature of this paper since it enables us to extend the techniques in [36] for integral
equations that cannot be realized as the dual formulation of a differential equation,
which is undoubtedly of independent interest.

Instead, we notice that (Qy,, 5 ) has a dual counterpart, which is given by

=(=A)"(fyou) in R"\ %, )
{u (—A) " (fyou) in R"\ (@0

u(x) =O(x|*") as |x| > +o0,

where (—A)~? denotes the inverse operator of the standard higher order fractional
Laplacian, namely

(=A)77 fou(x)) := (Rq * fo(u))(x) =p.v. /R” Ro(x = y) fo (u(y))dy,

where R, : R” x R" — R is the Riesz potential given by
Ro(x = y) = Cuglx — y| 727 3)
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6 Page6of77 J.H. Andrade et al.

with C,, » > 0 anormalizing constant. Our starting point in this paper will be to prove
that (9, ») and (Q/za,z) are equivalent (see Lemma 3.3).

When o € N is integer, that is 0 = m, Eq. (Q24,5) becomes the poly-harmonic
equation

{(—A)mu = fm(”) in R" \ 2 (PZm,Z)

u(x) = O(x*"=") as |x| — +o0.

The most natural case of (P, x) is when m = 1. In this situation, this equation
becomes the classical Lane-Emden equation. On this subject, Mazzeo and Pacard
[46, Theorem 2] based on a gluing technique via ODE theory to prove an existence
theorem. Furthermore, when o € (0, 1), we arrive at

Fos
u(x) = O(x[X") as |x| — 4o00. (F22,3)

{(—A)su — f,(u) in R"\3,
Recently, Ao et al. [8, Theorem 1.1] extended the earlier existence results for this
case. Their construction is substantially different from the previous one and relies on
the concept of a bubble tower (or Half-Dancer solutions). We can summarize these
results in the following statement:

Theorem A Let o € (0, 1] with n > 20. For any configuration ¥ = {x1,...,xn}
with N > 2, one can find a smooth positive singular solution to (Qas ) such that
sing(u) = X.

Letus briefly explain our strategy for the proof. We are based on Schoen’s [53] tactic,
which consists in finding an explicit infinite set of functions that span an approximate
nullspace, such that the linearized nonlinear nonlocal operator around this infinite-
dimensional family of solutions is invertible on its orthogonal complement. He first
solves the equation on the complement. Then he provides a set of balancing conditions
to ensure that the solution to this restricted problem is a solution to the original problem.
This method was recently extended for fractional operators [6].

This technique set differs substantially from the one in [46]. In their construction,
the authors obtain a one-parameter family of solutions which blows up quickly enough
near the singular set. These solutions are different in spirit from the ones in the non-
local case, since blow-limit Delaunay solutions for the scalar curvature problem are
classified to depend only on two parameters in [18]. Then, by linearizing the problem
around these solutions families, the resulting linear operator is proved to be surjective
on some reasonable space of functions, at least when the neck size parameter is suffi-
ciently small. A standard iteration argument may be used to obtain an exact solution to
(Q20,x) with a suitable blow-up rate. This strategy derives from its connections with
the earlier constructions of the CMC with Delaunay-type ends [48]. Compared with
the fractional case o € (0, 1), the main difference in our strategy is the proof of the
refined asymptotics near half-bubble towers solutions, which holds in a more general
setting.

Using this approach, we can perturb each bubble within the tower separately and
construct a bubble tower at each singularity, and as an appropriate approximate solution
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to (Qas.x). However, it is essential to note that the linearization of this approxi-
mate solution is not injective, as there is an infinite-dimensional kernel. As a result,
an infinite-dimensional Lyapunov—Schmidt reduction procedure is employed. This
approach is similar to Kapouleas’ CMC construction [38], which Malchiodi adapted
in [44] to produce new entire solutions for a semilinear equation with a subcritical
exponent that differ from the well-known spike solutions since they decay to zero
when moving away from three half-lines and do not tend to zero at infinity. For this,
he constructed a half-Dancer solution along each half-line. Whence, to solve the orig-
inal problem from the perturbed one, an infinite-dimensional system of Toda-type
needs to be solved, which arises from studying the interactions between the different
bubbles in the tower. The most robust interactions occur in the zero-mode level and
turn into some compatibility conditions (see Definition 5.5). In this fashion, a config-
uration satisfying such conditions is called balanced, related to well-known balancing
properties enjoyed by the sum of the Pohozaev invariants. Nonetheless, the remaining
interactions can be made small and are dealt with through a fixed-point argument.

These compatibility conditions do not restrict the location of the singularity points
but only affect the Delaunay parameter (neck size) at each end. We also note that due
to the heavy influence of the underlying geometry, the first compatibility condition
is similar to the ones found in [47] for the local case o = 1. However, the rest of
the configuration depends on the Toda-type system. In the local setting, a similar
procedure to remove the resonances of the linearized problem was considered in [10],
but the Toda-type system was finite-dimensional in their case.

On the technical level, our strategy is to employ the gluing method and Lyapunov—
Schmidt reduction method. First, we find a suitable approximate solution: a perturba-
tion of the summation of half-Delaunay solutions with a singularity at each puncture.
Then, use the reduction method to find a perturbed solution that satisfies the associ-
ated linearized problem with the right-hand side given by some Lagrangian multiplier
containing the approximate kernels of the linearized operator. This family of kernels
spans an infinite-dimensional set called the approximate null space. The last step is
to determine the infinite-dimensional free parameter set such that all the coefficients
of the projection on approximate null space vanish. This problem is reduced to the
solvability of some infinite-dimensional Toda system around each singular point. A
fundamental property in the proof is to have a sufficiently good approximate solution
(a half-Dancer) so that all the estimates are exponentially decreasing in terms of the
bubble tower parameter. A fixed-point argument in suitable weighted sequence spaces
then solves the problem of adjusting the parameters to have all equal to zero.

We remark that instead of relying on the well-known extension problem for the
fractional Laplacian [17], we are inspired by the approach in the approach given by
Delatorre et al. [26] to rewrite the fractional Laplacian in radial coordinates in terms of
a new integro-differential operator in logarithmic cylindrical coordinates. In our case,
such an extension does not exist in general. We emphasize that our proof is written
solely in the dual formulation, and it can be extended to general integral equations not
arising as the dual representation of a differential equation.

In light of the seminal result of Mazzeo, Pollack, and Uhlenbeck [49] (see also
[41]), it is natural to wonder if the marked moduli space in (1) can be furnished with
more structure. It is believed that the result below should hold
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6 Page8of77 J.H. Andrade et al.

Conjecture 1 Let o € (0, +o0] with n > 20. For any singular set A C S" such that
#A = N with N > 2, the marked moduli space of complete constant fractional higher
order singular Q-curvature metrics on the punctured round sphere Mo, n(g0) is an
analytic manifold with formal dimension equal the number of isolated singularities,
that is, dim(Mos n(g0)) = N.

Another possible development is to study the case in which a singular set is a disjoint
union of smooth submanifolds with possible distinct positive Hausdorff dimensions.
In this situation, it would be interesting to prove that the moduli space defined in
(1) is still nonempty and, in strong contrast with the case of isolated singularities, is
infinite-dimensional; this will be the topic of a forthcoming paper.

Let us explain this case in more detail. It is well known that the character of the
analysis required to prove the existence of solutions when R(g) < 0, which dates
back to the work of Loewner and Nirenberg [43] (see also [11, 29]), is fundamentally
different than in the positive scalar curvature case. Therefore, most of the literature is
concentrated on the positive scalar curvature case R(g) > 0. In this setting, it is natural
to have a solution one needs to impose some necessary conditions on the dimension.
More challenging it would be to construct solutions to (Qa, x) With uncountable
isolated singularities, for instance, in the lattice ¥ = Z". The existence of weak
solutions with larger dimension singular set for the singular Yamabe equation has
been studied by Mazzeo and Smale [50] and by Mazzeo and Pacard [46] for the scalar
curvature case. As well as by Hyder and Sire [35] for the (fourth order) Q-curvature
metrics, and by Ao et al. [6] for the (fractional order) Q-curvature metrics, based on
the construction of entire solutions from [7].

More generally, such solutions may be constructed on an arbitrary compact manifold
(M", g) of nonnegative scalar curvature R(g) > 0 whenever the singular set is a finite
disjoint union of submanifolds with positive bounded Hausdorff dimension, which we
describe as follows. Given o € (0, +00] withn > 20 and N > 2, welet A C S" be
a finite disjoint union of submanifolds A = A U A™, where A, = U‘gzlA]lf‘ with
k¢ := dimyy(A) denoting its Hausdorff dimension. Furthermore, we denote by

M, (80) = {3 € [g0] : g is complete on 8"\ A¥ and Q25 (8) = Qo }

the moduli space of complete constant fractional higher order Q-curvature metrics
with higher dimensional singularities. Notice that we simply denote M(z)a A(80) =

Mg, A (80)-

To summarize this discussion, we have the following statement:
TheoremB Let o € (0, +0o] with n > 20. Assume that A = A® U AT is a finite
disjoint union of submanifolds satisfying A° = @ and A, = ngl A]Z“ withQ < ky <
%. Then, there exists a metric g € MéU’A(go) that sing(g) = A. In particular,
one has Méa’ A(80) # @ and it is an infinite-dimensional analytic manifold.

With a mind on this statement, it would be natural to prove a similar result as below

Conjecture2 Let o € (0, 400] withn > 20. Assume that A = A® U AT such that

#A0 = N with N > 2 and A, = U‘ZZIA]Z‘ with 0 < kp < ”320. Then, there
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exists a metric g € MéU’A(go) satisfying that sing(g) = A. In particular, one has
M’;a. A(80) # @ and it is an infinite-dimensional analytic manifold.

As usual, we need to prove the existence of positive solutions to the GJIMS equation
on the conformally flat case S \ Sk ~ R” \ R¥ with fast decay away from the singular
set. Moreover, the dimension estimate above is sharp in the same sense of Gonzélez et
al. [31]. Namely, if a complete metric blows up at a smooth k-dimensional submanifold
and is polyhomogeneous, then k € Ry must satisfy the restriction above. All the
analysis for this type of equation comes from its conformal properties, which produce
a geometric interpretation of scattering theory and conformally covariant operators.
Exploiting the conformal equivalence R” \ R¥ ~ §"=k=1 x HK*! where R'j_‘H is
replaced by anti-de Sitter (AdS) space, but the arguments run in parallel. In the same
direction but with another flavor, we quote the multiplicity results in [4, 12-14, 21],
which also exploit this conformal invariance and are based on a topological bifurcation
technique; this is believed to be true in the much broader case of conformally variational
invariants (cf. [19, 20]).

One could extend this construction in a more geometric direction for not-round
metrics. On this subject, we cite [15, 52] for nonflat gluing constructions for the
constant curvature equation. Recently, in [2], a similar gluing construction is used to
prove existence results for fourth-order constant Q-curvature nondegenerate metrics
with suitable growth conditions on the Weyl tensor.

We now describe the plan for the rest of the paper. In Sect. 2, we establish some
terminology that will be used throughout the paper. In Sect. 3, we prove the dual
representation formularelating (Q2o, 3 ) with (Q) ».x)-InSect. 4, we classify Delaunay-
type solutions as bubble towers. In Sect. 5, we provide balancing equations. Next, we
define balanced configuration parameters and admissible perturbation sequences. We
use this to define approximate solutions and prove some estimates for the linearized
operator around this approximating family. In Sect. 6, we summarize some estimates
involving the coefficients of the projection on the approximate null space. In Sect. 7,
we reduce the proof of Theorem 2 to solving an infinite-dimensional Toda system. We
prove that under admissibility conditions, this system can be solved. In Appendix A,
we recall some estimates concerning the interaction between two spherical solutions
with different centers and radii.

2 Notations

We establish some notations and definitions that we will use frequently throughout
the text for easy reference.

e m := |o] is the integer part of o, that is, be the greatest integer that does not
exceed o;

s := {0} is the fractional part of o, thatis, s := o — |0 ];

0 < &,v, 1 < 1 are small constants;

e C > (is auniversal constant that may vary from line to line and even in the same
line.

a1 Sapifa) < Cay,a) 2 apifa; > Cap,and a) >~ ay ifa; S ap and a; 2 a.
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6 Page100f77 J.H. Andrade et al.

o u=0(f)asx — xo for xg € RU {£o0}, if limsup,_, , (u/f)(x) < oo is the
Big-O notation;

e u=o0(f)asx — xo for xo € RU {£o0}, if lim,_, y,(u/ f)(x) = 0 is the little-o
notation;

o u~u ifu=0®w) andu = O(u) as x — xg for xyg € R U {Fo0};

o (C/ “(R™), where j € Nand o € (0, 1), is the Holder space; we simply denote
C/RY ifa = 0.

e W4 (RR") is the classical Sobolev space, where m € N and g € [1, +00]; when

m = 0 we simply denote L4 (R") when ¢ = 2, we simply denote H*(R");

C20 (R™) = €25 (R™) is the classical Holder space;

[ ]

o Yy = "_220 is the Fowler rescaling exponent with y, = # its dual;

o 2% = nz’éa is the critical Sobolev exponent with 2} = ni’ég its dual;

e Ay, Ay > 0, A3 < 0 are constant defined by (A.1), (A.2), and (A.3), respectively;

o Too:={l,...,N} x Nx {0, ...,n} ~ £°R®*DNY is total index set;

e p:=(pi,..., PN) e "V with A := {p1,....,pN} CS";

o x:=(x1,...,xy) € R with £ := {xq, ..., xy} C R";

e L=(Ly,...,Ly) € Rﬁ is a vector of periods such that |L| >> 1 is large enough
arising from Proposition 5.3. Equivalently, &€ = (g1, ...,&en) € Rﬁ’ is a vector of

necksizes such that 0 < |e| <« 1 is small enough;
e (x,L) € RN are the moduli space parameters and Yeonr : ROTDN
R+2N s the configuration map;

e qg = (q1,.--,9N) € Rﬁ is a vector of comparable periods such that |g| > 1
is also large enough and satisfy (5.10), R = (R!,...,RY) € RY and ag =
(a(l), e, a(])V ) € R"™ are the deformation parameters;

e (q,a0,R) € RN are the configurations parameters and Yper : R®+2IN
KSO(R(”H)N ) is the configuration map;

° (qb, ag, R? ) € Bal, (%) denotes a balanced configuration, that is, it satisfies (%)
and (%,).

o (aj,Aj) € Z?(R("“)N) (or (aj,rj) € Zgo(R("“)N)) are the perturbation
sequences and Ype : RO+DN £2°(R+DN) ig the perturbation map;

e (aj,Lj) € Adm,(X) denotes the admissible perturbation sequences, that is, it
satisfies (%) and (27} ); equivalently T[;e% (aj, ;) € Bals (2);

® Ux.La;r)) € Ci(R"\ X) denotes a Delaunay solution with associated error
denoted by ¢(x,L.a;.1,) € Ci(R"\ X) and Yy : Ei’o(R(’”‘l)N) — Cy (R"\ X)
is the solution map;

® U(x,Lajr)) € ApX,(X) is an approximate solution, that is, T;)ll (U(x,Laj ) €
Adm, (X);

° {Z;e(aj, A}, j ez, C CO(R"™ \ %) is the associated family of approximating
normalized cokernels;

° {CS'Z @j, X))}, j,00eZ C CO(R™ \ %) is the associated family of coefficients of
the projections on approximating normalized cokernels;

° {,Bj.g(aj, A}i,joeTo C CO(R™ \ %) is the associated family of projections on
approximating normalized cokernels.
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3 Dual Representation Formula

This section shows that our equation and its dual are correspondents. We are based
on the removable singularity result from [9, Theorem 1.1]. We also refer to [51,
Proposition 4.1] for the integer cases o € N. In what follows, we consider the space

|u(x)]

. 1 .
LS(R’Z) = {M S LlOC(Rn) : o W

dx < +oo}
with s € (0, 1).
We first introduce the notation of distributional solutions to (Q2s,5).

Definition 3.1 Let o € R, and n > 20. We say that a smooth solution u € C* (R" \

)N LllOC (R™) to (Qas.,x) is a solution in the distributional sense to (Qas,x) if the

equality below holds
/ u(—A) pdx = / fo(w)edx in R"\ X 3.1)
n R)l

forall 9 € CP(R" \ X).

Remark 3.2 One can check that smooth solutions to (Qa,, ) are indeed distributional
solutions.

We need the following auxiliary result to prove the equivalence: a combination of
[9, Theorem 1.1 and Lemma 5.4].

LemmaA Leto € Ry andn > 20. Ifu € C2o(R*\ £)NLL (R") is a distributional

loc
solution to (Qas.x), then fy ou € LIIOC(R”) and u € L} (R") is a distributional

loc
solution in R", that is, the distributional equation (3.1) holds. Moreover, one has

Jo(u(x))

o mdx < 400. (32)

Consequently, we obtain that w € C®°(R" \ X) is defined as
wee) = [ Roe =) oy (33)

is well defined and belongs to Ls(R") for every s > 0.

Finally, we also recall the Liouville theorem from [34, Lemma 2.4].

LemmaB Leto € Ry andn > 20. Assume that w € Lg(R") for some s > 0 and
(=A)°w =0 in R",
for some o > s. Then, one has that w is a polynomial of degree at most |2s |.
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With the lemmas above, we have our main result in this section.

Proposition3.3 Let 0 € Ry and n > 20. It holds that (Qas.x) and (Q/za,z) are
equivalents.

Proof of Proposition 3.3 Let u € C®°(R" \ X) be a positive singular fast-decaying
solution to (Qy. x). From (3.2), we have that w € L (R") forevery s > 0, s # 20.
Hence,ifwedefinew = u—w,thenw € L;(R™)foralls > Owiths # 20.Inaddition,
since (—A)?w = 0 in R", we conclude that w is a polynomial of degree at most 2m,
thanks to the Liouville theorem in Lemma B. Recall that we are considering solutions
satisfying lim|y|— o0 #(x) = 0. Consequently, w = 0, and the dual representation
holds. O

4 Delaunay-Type Solutions
This section is devoted to the construction of solutions for the case of a single isolated

singularity, thatis, ¥ = {0}. We are inspired in [37], which is an adaption of the earlier
constructions in [8, 26, 27] for the cases 0 € (0, 1) and 0 = 1.

4.1 Integral Emden-Fowler Coordinates

As a matter of fact, when £ = {0}, Eq. (Q24,x) can be rewritten as

(=A)7u = fo(u) in R"\ {0},

lim u(x) = +oo, (Q20.00)
[x]—+o00
or into its dual form
u=(—A)"(fyou) in R"\ {0} )
(D2g.00)

lim u(x) = +o0.
|x|—4o00

It is straightforward to see from Proposition 3.3 that (Q24, o) are (Q’ZU’ o) Equivalents.

Remark 4.1 For any o € (1, +o00] and n > 20, there are two distinguished solutions
to (Q/2 o ~0)» Which we describe as follows:

(a) The cylindrical solution
Ueyl(|x]) = an o |x|777, 4.1)

which is singular at the origin.
(b) The standard spherical solution (also known as “bubble” solution)

Yo
usph (|x]) = ( ) , (4.2)

1+ |x|?

which is nonsingular at the origin.
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We remark that all nonsingular solutions to the blow-up limit problem were clas-
sified in [24], which are given by deformations of the standard bubble solution. This
reflects the invariance of equation (Q), .00) With respect to the entire Euclidean group
with translations and dilations.

Proposition A Let o € (1, +00] and n > 20. If u € C** (R") is a positive smooth
nonsingular solution to ( Q/2(7, o) then there exists » € R and xo € R" such that

u = Uy x» (4.3)
where
Uj. x(x) ( 2t )yn 4.4)
X) = —_— .
A, X0 )\'2 + |x _ x0|2

for some ) > 0 and xo € R"™. This family of solutions will be called spherical or
bubble solutions.

The problem of classifying the complete set of positive smooth singular solutions
to (9, .00) 18 much more challenging and only accomplished for a few cases. On
this subject, Chen, Li, and Ou proved that all solutions are radially symmetric with
respect to the origin. In addition, Jin and Xiong [37] only proved the existence of such
a solution by a direct maximization method. Furthermore, they also study the local
asymptotic behavior of positive singular solutions to

(=A)°u = fo(u) in Bpg, (Q26,R)
or into its dual form
u=(—=A)"(fyou) in Bj, (Q/ZU,R)

where By C R" \ {0} given by By = Bg(0) \ {0} is the punctured ball of radius
R > 0.

To study this class of equations, we define an important change of variables that
turns (924, 00) into an integral one-dimensional problem.

Definition 4.2 Let o € (1, +00] and n > 20. We define the integral Emden—Fowler
change of variables (or cylindrical logarithm coordinates) given by

To : C(BR) — C°(Cr) givenby Fo(u) =e u(e™,0), 4.5)

where t = —InR, 0 = x/|x|,C := (L, 4+00) with L = —In x| and y, := %

The inverse of this isomorphism is
(o)™ CZ(CL) — CX(BR) givenby (Fo) ™' (v) = [x["v(~In|x].6). (4.6)

The quantity y, > 0 will be referred to as the Fowler rescaling exponent. From now
on, we denote by v(z, 0) := §o (u(x)) and u(x) := &)L, 0)), conversely.
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Using this change of variable, Eq. (Q24 r) can be reformulated as the following
one-dimensional problem:

lim v() = 0. (O2.1)

t—>—+00

:(—A)‘C’yIUZfa(v) in Cr.

Here (—A)gy1 :C%?(CL) — C°(Cy) is the operator higher order operator given by

(—A)% = (~ )y 0 (~A)D, @.7)

where (—A)":”y] and (—A)f;yl denote the cylindrical poly-Laplacian and the fractional

Laplacian, respectively, defined as

2m 2m
. .
(==Y Y K 0 (= a0)",
£=0 j=0
where Kéﬁzy/‘ = Kéﬁz’j(n) > O for j, £ € {0, ..., 2m} are dimensional constants, and
+L
(=A)gyv(t, 0) == Ko(t —17,6 —9)[v(t,0) —v(r, ¢)ldrdg,

—L

where Ko cy1 : Cr x Cp, — Ris the kernel (2) written in Emden—Fowler coordinates.
As usual, the dual form of this equation is given by

v=(=A)y (foov) in CL, ,
[ lim wv(t) =0. (O30,

t—+00

Here (—A)C_y‘]’ is the integral linear operator defined by

(—A)g] (fo 0 V(1. 0) = (Rg * (fo 0 1))(t.60)

+o00 -
_ / Roll — 7.0 — &) fo(u(z. ))dr.

—00

where 7/3\(, : C xCr — RistheRieszkernel (32\written in Emden—liowler coordinates.
Henceforth, we keep the notation Ky .yl = Ko and Rg eyt = R, for the sake of
simplicity.

Remark 4.3 Notice that (— A)C_y‘lr is an abuse of notation, which we keep for simplicity.
In the geometric language, this change of variables corresponds to a restriction of the
conformal diffeomorphism between the entire cylinder and the punctured space. In
other words, one has

(_A);}/T = P2cr(gcy])7
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where gey1 = dr? + d6? stands for the cylindrical metric and d6 = 21§, where § is
the standard flat metric.

Notice that since in the blow-up limit situation (R = +00), solutions to (Q24,00)
are rotationally invariant, that is, u(x) = u(r) with » = |x|. Using this change of
variable, Eq. (Q2+.00) can be reformulated as the following one-dimensional problem

(—A)Z = fo(v) in R,
{ v (O25.00)

i v =0,

Here (—A), ,1 fepresents the operator higher order operator (written in Emden—Fowler
coordinates (4 5)), namely
oo
(=) () = Ko (@ — Dlv@) — v(v)ldz, (4.8)

—00

where Ky : R x R — R is a kernel given by
Ko(t) =277 / | cosh(t) — (0, T)| Yo dr
Snfl
— / Vol (1 +e 2 — 207148, r)>% dr. (4.9)
Sn—l

As before, the dual form of this equation is given by

lim v() =0. (©36,00)

t—+00

{v = (=A)gi (foov) in R,

Here (—A)C_y‘l’ is the integral linear operator defined by

(=)t (fo o 0)(1) == (Ro # (fo 0 0))(1)
+oo _
= Ro(t —7) fo (v(7))dr,

—00

where 730 :R x R — R is akernel given by

1 n=3
R, (1) =2—Vawn,2/ (1 —;12) 2 Jcosh(t) — 1|7 dey. (4.10)
—1

Remark 4.4 1t is possible to express this kernel in terms of hypergeometric functions.
We also observe R (§) ~ 1 is bounded and Holder continuous, whereas IC &) ~
|€]'=2% when o € (1, +00). Furthermore, they behave qualitatively as

Ky ) ~e 7kl as |£] - 400 4.11)
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and R
Ry ) ~e 7kl as || > 400, (4.12)

where & := |t — 7|. We refer to [8, 37] for proof of these facts.
Using this new formulation, one has the following:

Remark 4.5 As before, there are two distinguished solutions to (Oéa’ 1), which we
describe as follows:

(a) The cylindrical solution, which is
Ucyl(t) =dno,

where veyl = Fo (ey1) € C27 (R) with ucyr € C2° (R™ \ {0}) given by (4.1).
(b) The standard spherical solution (also known as “bubble”) which is

VUsph (1) = cosh(1)", (4.13)
where veph = Fo (Uspn) € C2° (R) with ugpn € C27 (R" \ {0}) given by (4.2).

4.2 Asymptotic Classification of Delaunay-Type Solutions

Now we prove the existence of even solutions to (0/2”’ ;) with large periods which
are close to the standard bubble tower solution given by (5.5) in a suitable weighted
Holder norm.

First, for the standard bubble solution, we have the following nondegeneracy result,
whichis based on [42, Lemma 5.1] and [25, Lemma 5.1]. In our situation, this is proved
in [39, Lemma A.1]. Nevertheless, we include a sketch of the proof in Appendix B for
completeness.

Lemma4.6 Let 0 € (1,00) and n > 20. The standard bubble solution ugp, €

C?° (R") given by (4.2) satisfying (Qay.00) is nondegenerate in a sense, the set of
bounded solutions to the linearized equation

¢ — (=A) 7 (fy (uspn)p) =0 in R" (4.14)
are spanned by the functions
Yolsph + X - Vuspn  and  Oyugpn for i € {1,...,n}.

Proof See Appendix B. O

One can also reformulate the last result as follows:
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Lemma4.7 Leto € (1, 00) andn > 20. The standard bubble solution vy, € C% (R)
given by (4.13) satisfying (O} o.1) is nondegenerate in the sense that all bounded
solutions of the linearized equation

are spanned by the translations vsph (- — T) with T > 0.
Proof 1t follows by undoing the Emden—Fowler change of variables in (4.5). O

Second, we restrict ourselves to the open interval (—L, L) equipped with Dirichlet
boundary conditjons. In what follows, we fix L € N. Let j € Nand @ € (0, 1),

we denote by C;*“(R) the classical Holder space C/+*(R) restricted to 2L-periodic
functions on the open interval (—L, L). For « = 0, we simply denote Ci (R). Let

¢ € Nand g € [1, +o0], we will keep the notation Wf’q(R) for the classical Sobolev
space W4 (R) restricted to 2 L-periodic functions on the open interval (—L, L). For
q = 2, we simply denote H f (R).

To seek 2 L-periodic solutions, we consider the following periodic problem:

(0/2(7, L)

v = (—A);y‘va(fc ov) in R,
limy— 400 V(1) = 0,

where (—A)C_yT’L : Cg R) — C%" (R) is the integral periodic linear operator defined
by

L
AT e 000 =i [ )R~ i
-L
For this, we shall work with the norm given by

m 12
— | rpm 2
1ol g ) = ([v I @) + ezo llv IIL%(R)> :

where Lo
WL @) = /_L /_L[v(”‘) (t) — v (1) PKy.L (t — T)drdt.
We also define the following higher order functional space:
H (R) = {v € C[”(R) : [[v]l g m) < 00}
Furthermore, the evenness and periodicity
Hgv*(R) ={ve Hf (R) : v(t) = v(—t) and v(r + 2L) = v(r) for all r € R}.
As well as, taking into consideration the boundary condition

HY ((R) = {v e Hf (R) : vO(—=L) = v (L) = 0for £ € {1,...,m}}.
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Finally, a suitable space to work is
H o ,R) = Hf ((R) N Hf ,(R).
Here I/C\S,L :(—L,L) x (—L, L) — R given by

Ksr(t—1)=> Kt —7—jL) (4.15)

JEZ

is a periodic Kernel, where I’C\S :R x R — Ris defined as (4.9).
Now, we will introduce some standard Holder fractional from [28, Theorem 8.2].

LemmaC Lets € (0, 1) and n > 2s. Assume that p € [1, +00). Then, there exists a
constant C > 0, depending on o and p, such that

1

L 1
[v(@®) —v(@)I” g

vllgo. @) <C(|lv||Lp(R) / / P —————didr (4.16)

foranyv e LY 1 (R), where o = 5 — F

Lemma4.8 Leto € (1, +oo] andn > 20. Assume that p € [1,+00) and o € (1, %)

is such that o — % ¢ 7. Then, there exists a constant C > 0, depending on o and p,
such that

1
<c ’ |v(m)(t)_v(m)(T)|pdtd T
ooty < € (110 mr g + )@

o,p _ _ 1 R _1
forany v € W;'"(R), where { = |o pJanda—G > Lo pJ.

Proof 1t is a direct consequence of Lemma C by using a standard induction argument.
O

We also need the following strong maximum principle.

Lemma4.9 Leto € (1,+oo]landn > 20. If v € H (R) N CO%(R) is a nonnegative
solution to (O/ZU’L). Then, either v > 0 or v = 0.

Proof Indeed, since v > 0, it follows that

v=(=A)] (fs 0v) = 0. (4.18)

Assume that there exists a point 79 € R with v(#p) = 0, then

v(t0) — v(t) = (=A) o [fo (1)) — fo ((1))]
+00 .
=p.v. fo (v(t0)) R (tg — T)dT — Pp.V.

—00
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+00

x fo ) Ro (t — T)d7
—00
+00 .
= —p.V./ Jo(@)Rs(t —1)dT <0
—0o0
satisfies (4.18) only in the case v = 0. O

Now, we have the most important lemma in this section.

Lemma4.10 Leto € (1, +00) and n > 20. For any L >> 1 sufficiently large, there
exist a sequence of periods (L j) € £>°(Ry), an error function Y.L,y € Hj (R) and
a unique positive even solution v,1;) € HJ (R) to the following periodic boundary
value problem:

v=(=A)g i (foov) in (L, L), —
(4 14 (OZU,L)
vO(—L)y=0vOWL)=0 for €=1,3,....2m—1,
which satisfy
v, (1) = OL DO+ V.,
and

¥ o.LplHe® — 0 as L — +o0,

where V(-(")_,Lj) = ZjeZ V(O,Lj)(t) with V(O,Lj)(t) = cosh(t — Lj) and Lj =2jL for
J € Z is the standard bubble tower solution (see Definition 5.2) . Moreover, we have
the following Holder estimate:

IWo.Lplcrg Se” Yo LU+5) (4.19)
R) ~

for some o € (0, 1) and & > 0 independent of the period L >> 1 large.

Proof First, by symmetry v € Cz" (R) given by (5.2) satisfies the boundary condition
at t+ = =L, that is, V(0 L) € H(o,L,)(R) Now writing v = V(OL N Y, we can

reformulate (O} ;) as

AoV, +¥) =0 in R,
where

Ao 1) 1= v = (=A) T (f5 0 v). (4.20)

From now on, let us fix the notation

A0 LNW) = Aot (Vg 1+ V)
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Next, by linearizing this functional around the standard bubble tower solution, we find
L0, Lj)(¥) = &5(0, Lj)(V(J&Lj)) + 760, L)), 4.21)

where % (0, L;) : HY (R) — HJ (R) defined as .Z; (0, L;) := dJI{,[V(‘g’Lj)] satis-
fies
Zo(0, L)) == — (0, Lj) (), (4.22)

where

L o~
Ha 0, L)) = (=D) " (fy o Vg, )V = / ) foVig 1 )W Re Lt = D)dT
(4.23)

represents the derivative of the nonlinear functional (4.20) at the standard bubble tower
solution (5.2). Also, the superlinear term .2 (0, L ;) : HY (R) — H} (R) is given by

o0, L))

o~

L
= f_ ) [fa(v(g,Lj) +9) = fo(Vig ) = f;<v(3Lj)>w] Ro,L(t — T)dt.
is a superlinear term, and the remainder error term is given by

& O, LNV, )

L —~~
=/L Jo ZV(O,L,-)(T) _chr (V(O,Lj)(f)) Ro,(t — 7)d7,

JEZ jeZ
(4.24)

which represents the error in approximating a solution to (5.2) by a standard bubble
tower solution.

To apply classical Fredholm theory we need to prove the following claim:
Claim 1: The operator 75 (0, L) : H7 (R) — H (R) defined in (4.23) is bounded
and compact and satisfies

|76 0. LYW | oy S 1112 @) (4.25)

uniformly on L > 1 large.

Initially, we prove that the operator is bounded and compact. Indeed, by its definition,
KoL € C/*(R) for any j € {0, ..., m} and some o € (0, 1). Moreover, for each j,
we have

d/ ~ ‘
— Ko ()] S ecilll (4.26)

de/
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uniformly on L > 1 large. Similarly, we have

{/\+ < e*CM
| (O,L/-)| ~

uniformly on L > 1 large. By Holder’s inequality, it follows directly

| #50. L)

2® < ||1/f||L%(R) forall je{0,...,m}
L

uniformly on L >> 1 large. R
Also, using the Holder continuity of (K, 7)™ € C%**5(R), we have
5.0, L)) ™ (@) = 5.0, L) ™ ()]
/ Fo (V.1 @) ‘dém (Ko.(t —8) =Kot - s))‘ | (&)1dé
S /_L Y @)lle — 7["dé.

Thus, by using the asymptotic behavior of the kernel near the origin given by (4.11)
and (4.26) combined with the last inequality, we obtain

[Ji{, (0, Lj)(I//)]L‘L(R)

L

= [ a0, @) = Ao 0. L™ 0 Raso - erarar
L

5 ”w“L%(R) s

uniformly on L >> 1 large, which proves (4.25). In conclusion, by compact embedding,
the desired conclusion holds for the map ;5 (0, L;) : Hf (R) — HJ (R).

The proof of the first claim is now finished.

Second, now in order to apply Fredholm alternative to conclude that for any & €
L% (R), there exists a unique solution v, Ly € HY (R) to the linear inhomogeneous
problem

VYo.L;) —#:0,Lj)Wo.L)) =h in (=L, L).

One needs to prove the uniqueness result below:
Claim 2: The linear homogeneous equation

Y — A0, L)) =0 in (=L, L)

admits only zero solutions in L% (R).
As amatter of fact, note that the equation above with Holder’s inequality yields directly
that

IV lle® S 1V IL2 g - (4.27)
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Next, we use the nondegeneracy of the standard bubble solution in Lemma 4.6 to

conclude that ¢ = 0, and thus we prove Claim 2.

Lastly, by the standard fixed-point argument, a unique solution ¥,y € Hf (R)

to (4.21) satisfying the estimate

IWo.Lpllag y@ < 1660, L)V 1 )ll2 )

(4.28)

to conclude the proof of the proposition, we are left to obtain estimates for the right-

hand side of the last inequality.
This is the content of our third claim.

Claim 3: It holds that |W”HZO(R) < eV LU+ for some & > 0 uniformly on L > 1

large.
In fact, using (5.2) it follows

n+20
n—20

L
65(0, Lj)(v(-(i)_,Lj)) =Cno /L Z V(O,L_j)(T)

JEZ

n+20 -~
— Z V((),Lj)(‘f)"*% RU’L(I‘ — 1)dr.

JEZ
Since by symmetry, we have V(o,_Lj)(t) < V(o,Lj)(t) for r > 0, it holds
16600, LNV 1)

n+20

L 4o ~
S [ Ve > Vory@+ Y V(@ | ReL(t — t)dr

jez* jez

L
4o -~
< § / V(0,000 (1) =27 V(0,1 (T) R, L.(t — T)dT
: -L
jez*

L
n+20 ~
+ Z / V(O,Lj)(‘t)"*% Ro.r(t — 7)dr.
jezx L

From (4.29), we find

L
/ 16O.L DV L)1t

L L
8a ~
S / Z / V(0.00) (1) 72 V(0,1 (T)*Ro, L(t — 7T)°dT
-L L

JEZ* Y T

L 2n44o0 ~
+ E / V(O,Lj)(l') n—=2o RU’L(I — ‘L’)zdl' dr
. —L
jez*
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Z/ / Voo oo)(t)n % V0, L) (1)*Ro.1 (t — 7)2drdr

Jjez*

L L 2n+40 ~ 2
+ Z . Vi0,2,)(T) 72 R, (t — 7)°dT

=
=11 + L. (4.30)

To estimate these two terms, we fix @ € (0, 1) and subdivide R = {|t| < «L} U
{|#| > aL}. Then, we use the exponential decay of the standard bubble solution from
Proposition B to obtain

> Vo Se T and Y Vo, Seh 4.31)
JEL* jez*

Hence, by substituting in (4.31) into the first term in (4.30), we obtain

I = Z/ / Vo, oo)(f)" % Vo.L; V(0 Ro.1 (t — 7)drdr

jezZ*
< o2 LC-a) | 2oL (i 20) =
S e 2ol @e) | =2y L4 (4.32)

for some £ > 0 (depending only on n, o, and «), where we used the asymptotic
behavior of the Kernel (4.12) for T — 400 large and the fact that it is bounded for
7 — 0 small.

Furthermore, by substituting (4.31) into the second term in (4.30), we have

o~ n+2o0
Z/ / Vio.L)(0) 75 R (1 — 1)7dedt S e 27100 4 o= 20 LGED),
JEZ*

(4.33)

In conclusion, by substituting (4.32) and (4.33) into (4.29), we have
1650, L)(Vi§ Gr)le Se —¥o L(1+£)

for some & > O uniformly on L > 1 large, which combined with (4.28) proves the
third claim.

Finally, by standard estimates in Lemma 4.8 combined with the regularity lifting
theorem from [23, Theorem 3.3.1] applied to (4.21), it follows that v, L) € H‘Z’O, L(R)
is smooth and satisfies

»L(1
V. llcrotagm) S e Yo tIHE)

for some & > 0 independent of L > 1 large.
Therefore, the maximum principle in Lemma 4.9 concludes the proof of the propo-
sition. O
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Remark 4.11 It is worth noticing that the last proof differs in spirit from the local
inversion technique in [36, Proposition 2.3]. Instead of using this method, we give an
alternative proof based on the dual formulation from Lemma 3.3. This technique is of
independent interest to a larger class of integral equations not necessarily arising as
the dual of a differential equation.

Remark 4.12 We notice that it is straightforward to extend the local inversion method
in [36, Proposition 2.3] at least for the higher order local cases o = m € N. To verify
this fact, we write the poly-harmonic operator in Emden—Fowler coordinates, which
gives us

(=) = (Al + (— A,

with
( A)rad = a(m) _ K2((3,3_28[(2m_2) 4t (—1)mK1(0)8[(1) + (—1)m+1KO(O),
and
2m 2m
0 q() 14
(g = D =D T Ky 00"
=1 j=0

where Kéﬁz Kz(f.f,j(n) > 0forje{0,...,2m}and £ € {1, ...,2m} are dimen-
sional constants. For this computation, we refer the interested reader to [5]. After
that, we need to build on the classification result from standard bubbles for the crit-
ical Sobolev embedding H" (R") — L2n (R"), where 2% = from [54] and a

n— 2m
standard nondegeneracy technique as in Lemma 4.6.

As an immediate consequence of the last proposition, one has

Corollary 4.13 Let o € (1, 400) and n > 20. For any L > 1 sufficiently large, there
exist a sequence of periods (L ;) € £>°(R,.), an error function o, Ly € Hf (R) and
a unique positive even periodic solution v, ;) € Hf (R) to (O}, ) satisfying

v, (1) = OL DO+ Vo,
and
IVo..)llHg ) = 0 as L — o0,
where \7(?)' L € C2° (R) is the standard bubble tower solution given by (5.5). Moreover,
we have the following Holder estimate:

IWo.pller @ S e 7t (4.34)

for some o € (0, 1) and & > 0 independent of the period L > 1 large.

Since (O25,00) is translational invariant, we now will use the periodic solution
V(0,1 ;) Which attains its minimum at the points = 2jL with j € Z. Indeed, using
Lemma 4.10, this periodic solution can be expressed as a perturbation of a bubble
tower with estimated error.
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Definition 4.14 Leto € (1, 4o00) and n > 20. For any L > 1 sufficiently large, let
us define the generalized bubble tower solution

(i) (Emden—Fowler coordinates)
30, (1) 3= V1) (O + Y0, (4.35)

where f/\(JO“ L) € C2°(R) is the standard half-bubble tower solution given by (5.6)

and ¥ 0,.;) € C27(R) the perturbation function constructed in Corollary 4.13.
More precisely, one has

\//\(J(g’Lj)(t)=Zcosh(t—Lj—L)V", where L; = (1+2j)L for jeN.
jeN

(i1) (Spherical coordinates)
10,2 (%) == Uy 1 (%) + 0.2, (), (4.36)

where U ('g L € C%°(R™ \ X) is the standard half-bubble tower solution given

by (5.3) and ¢(,;) € C%? (R" \ %) is the perturbation function constructed in
Corollary 5.1. More precisely, we have

Yo

~ A .

+ _ J . — o~ UF2)L i

U(O’Lj)(x)_ .EN<)»§+|XI2> , Where Aj=e for jeN.
je

We find better asymptotics near the isolated singularities for the deformed solution
obtained in Lemma 4.10. These refined estimates in terms of the bubble tower solution

will be a crucial part of estimating the errors in our approximate solution in the gluing
procedure in Sect. 7.

Lemma 4.15 The asymptotics holds
ﬁ(o,Lj)(t) = vgph(1)(1 +0(1)) as L — +oo0, 4.37)
or undoing the Emden—Fowler change of variables, it holds
u,L;)(t) = usph(|x[)(1 +0(1)) as L — +oo.
Moreover, one has
uo,L;)(x) = Ix|""27e 7L (1 4 0(1)) as L — 400 (4.38)

and
gL = ﬁ(o,L_,)(O) = e_V“L(l +o0(l)) as L — +o0.

This parameter is called the neck size or Delaunay parameter.
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Proof Notice that for + < 0 (or |x| > 1), the proof of the lemma follows as a com-
bination of Corollary 4.13 together with exponential decay of the standard spherical
solution in Emden—Fowler coordinates to prove (4.37). O

5 Approximate Solution

This section will construct a suitable approximate solution to (Q/za,z)' We also prove
some estimates concerning the behavior of such a solution near the singular set. As we
have mentioned, one of the main ideas is that, although we would like the approximate
solution to have Delaunay-type singularities around each point isolated singularity, it
should have a fast decay once we are away from the singular set to glue to the flat
background manifold. To this end, we will only take half a Delaunay solution (this is,
only values j € N).

5.1 Local Asymptotic Behavior

In this subsection, we study the local behavior of solutions to (Q/za, o) near the isolated
singularity at the origin. Namely, we show that near the origin, it can be approximated
by a bubble tower solution. In contrast with the cases o € {1, 2, 3} on which a complete
classification of this local behavior is given in terms of the two-parameter family of
Delaunay solutions studied in [5, 18, 30], which are inspired by the classical result of
Korevaar et al. [40] for o = 1 and Caffarelli et al. o € (0, 1) [16]. These will be the
building blocks in constructing suitable approximate solutions to (Q/20, 00)
First, recall the local asymptotic classification result from [37].

PropositionB Let o € (1, +00) andn > 20.

(i) Assume that R = +o00. For any L > 1 sufficiently large, there exists a blow-up
limit solution to (Q’ZG,OO) denoted by uy € C2 (R" \ {0}) and given by

uo.0)(*¥) = o) (v0.1)) = X177 v0,1) (= In |x]),

where vy € Cc% (R) is a bounded periodic even solution to ( (9’2 . 1.)- In addition,
one has
vo.)(x) = Oe L) as t — +oo.

These will be called Delaunay solutions.

(ii) Assume that 0 < R < +o0. Ifu € Cz“(B;}) is a positive singular solution to
(Q, o.r)> then there exists a Delaunay solution with a large period, denoted by u .,
such that

u(x) =uo,r)(x)(I+o(l)) as |x| -0,

or
v(t) = vo,0))(1 +o(l)) as t — +oo,

where L > 1 is sufficiently large.
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In addition, writing Lemma 4.15 into using Emden—Fowler change of variables, we
can reformulate it as an improvement for the result above.

Corollary 5.1 Let o € (1, +0o0) and n > 20. For any L >> 1 sufficiently large, there
exist a sequence of periods (L ;) € £>°(Ry) such that b, € HY (R"\ {0}) and a
unique positive even solution i, 1.;) € HY (R"\ {0}) to (leo,oo) satisfying

uo,L)(x) = ﬁ$,L_/)(X) + .., (),

and
0,2l H ®m\0y) = 0 as L — o0,

where 17(46’]4[) € C% (R" \ {0}) is the standard bubble tower solution given by (5.2).
Moreover, we have the following Holder estimate:

lp0.2,)llc2e oy S € 7o) (5.1)

for some o € (0, 1) and & > 0 independent of L > 1 large.

Based on the definition of a spherical solution in (4.2) and (4.13), we introduce the
concept of a standard bubble tower solution. In addition, in order to have fast decay
far from the singularity (r — —o0), we will need only half a bubble tower. This fact
motivates the following definition:

Definition 5.2 Leto € (1, 400) and n > 20. For any L > 1 sufficiently large, let us
define the following standard bubble tower solution:

(i) (Spherical coordinates)

Uo.L)x) =Y _ Uq.Lyx), (5.2)
JEZL
and R
U1,y @ =D UL, (5.3)
jeN
where
Yo
Uo.;)(x) = )\_,2 with A; =e 2L for jeZ. (5.4)
! A% + |x]

(ii)) (Emden—Fowler coordinates)

VoL =Y Voo, (5.5)
JEZL
and _
V(J(g,L_,-)(t) = Z Vo, (@), (5.6)
JjeN
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where
Vio.;)(#) = cosh(t — L) with L;j=2jL for jeZ. 5.7)
These will be called the standard bubble tower solution.

As a consequence of Corollary 4.13, we will improve the last two results. Indeed,
we show that near an isolated singularity, solutions are close to some bubble tower
solution up to some controlled error.

Proposition 5.3 Let o € (1, +oo] withn > 20. Ifu € C*° (B%) is a positive smooth
singular solution to (Q) o.8) With R > 0, then there exist a sequence of periods
(L)) € €°(Ry) and a blow-up limit solution i, 1 ;) € C27 (R™\ {0}) to (Q/Zo,oo) such
that

u(x) = IZ(O,L/.)(X)(I 4+ o(l)) as |x|] = 0.

More precisely, one has
uo,L,)x) = ﬁ(o,Lj)(x) +éo.L;) (%), (5.8)

where ﬁ(O,LJ-) € C°(R" \ {0}) is the standard bubble tower solution in (5.3) and
é.L;) € H° (R") satisfies

ld©,2)lle2o ®njop < e Ve LUFE) (5.9)

for some o € (0, 1) and & > 0 independent of L > 1 large.

5.2 Balanced Configurations

Here, we introduce a necessary set of compatibility conditions for the configuration
parameters.

Definition 5.4 Leto € (1, 400),n > 20,and N > 2. Given L > 1 large enough, we
will fix the vector L = (L, ..., Ly) € Rﬁ to be the Delaunay parameters, which are
also related to the neck sizes of each Delaunay solution. They will be chosen (large
enough) in the proof. They will satisfy the following conditions |L; — L| < 1 for all
i €{l,..., N}. More precisely, they will be related by the vectorq = (g1, ...,gn) €
Rﬁ , which satisfy the following relations:

gie 7t =e vl for ie{l,...,N}. (5.10)

Next, we will give some explanation about the choice of parameters. Given the
N (n +2) balancing parameters (¢”, R?, &S) satisfying the balancing conditions (%)
and (%,), we first choose N (n + 2) initial perturbation parameters (g, R, @) which

are close to the balancing parameters, i.e., (5.11) and (5.12).
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Definition5.5 Let 0 € (1,+00), n > 20, and N > 2. For any fixed non-
negative vector g = (q{’, ey qf{,) € Rﬁ, let us define the vector (ag, RY) =
(a(")’b, . ,aév’b, RV, .. RN:by € ROHTDN to be determined by the following bal-
ancing conditions:

af = A2y ql(RPR'DYe x — x| for i€ (l,....N}  (#)
i i

and

ag” A3 Xt =Xi 4D ih il v :
()\i,b)z __A_l mq—b(]e’ R'7)Ye for i e{l,...,N} (f@z)
0 i ! ! i

where )»f)’b = Ri’be_l‘ib, and the Lf € R are defined from the q;’ € R4 by (5.10) for
eachi € {1, ..., N}andtheconstants Aj, Ay > 0, A3 < Oaredefinedin (A.1), (A.2),
and (A.3), respectively. We denote by (qb , ag, R? ) € Bal,(X) the set of balanced
configurations.

Remark 5.6 We remark that it has been shown in [47, Remark 3] that for ¢ :=

(q{’, e, q]’f,) € Rﬁ in the positive octant, there exists a solution R? = (Rl'b, e, RN'b)
to equation (). Once this is chosen, then we can use equation (%;) to determine
ag = (a(l)’b, ce a(])v ’b) € (R’}r)N . In other words, the set of balanced configurations is

nonempty Bal, (X) # @ forall o € Ry.

Although the meaning of these compatibility conditions will become apparent in
the following sections, we have just seen that they are analogous to those of [46] for
the local case. The idea is that perturbations at the base level should be very close
to those for a single bubble. This fact also shows, in particular, that even though our
problem is nonlocal, very near the singularity, it presents a local behavior due to the
strong influence of the underlying geometry. However, for the rest of the perturbation
parameters, we must solve an infinite-dimensional system of equations.

The last discussion motivates the definition below:

Definition 5.7 Let 0 € (1,4+00), n > 20 and N > 2. We define the so-called
configuration map Yeont : ROTDN — ROF2N which associates compatible moduli
space parameters (x, L) with configuration parameters (g, ag, R). We say that a set
moduli space parameters (x, L) € R"TDN is compatible if its associated set of
configuration parameters (q, a9, R) € Bal, (X) is balanced.

5.3 Admissible Perturbation Parameters

We also would like to introduce some perturbation parameters R € R,a € R”",
since each standard bubble has n 4 1 free parameters corresponding to scaling and
translations, which is done for each bubble in the bubble tower independently. Thus,
we will have an infinite-dimensional set of perturbations.
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Definition 5.8 Let 0 € (1, 4+00), n > 20, and N > 2. For any L > 1 sufficiently

large and L = (L', ..., LV) € ¢*(RY) and R = (R', ..., RN) € ¢>°RY) such
that (5.10) holds, let us define the full set of perturbation parameters (a;,A;) =
(a},...,af.",x},...,)\;v) € (X (R™DNY where

)»j. :Rj-e_a”j)Li for i €{l,...,N} and j € Z.

We introduce the perturbation parameters we will use in the gluing technique:

Definition 5.9 Leto € (1, +00),n > 20,and N > 2. Let R = (R!,...,RV) e RY
and g € RY = (q1, ..., qn) be such that

IR" = R“P| <1 and |g; —¢?| <1 for iefl,..., N} (5.11)

Also, we let A0 = (0, ..., 20" e RY and &) = (@}, ...,a)) € RMHN be,
respectively, given by

. .42 .
MO = Rie™ 7L for iefl,...,N}
and
i,0
) A .
05 = Yo for ie{l,...,N}
(1572
such that ' .
lah —al’I <1, (5.12)
where
i,b
~i,b dy
0 i,b
(g )2
Foralli € {1,..., N}and j € N, letus define the sequence of perturbation parameters

(aj, ;) =(a',...,a"V, R, ..., RN) e (®XR"+DN) by

i

a
i _ pi i J =i __ ~l ~[
Rj =R'(1 +rj) and 2 =a; =ay+aj, (5.13)
J
where (@, r;) = (@,...,a", rl, ... rV) € (°(ROTDN) satisty
Fi < e™ and (@i S e for ief{l,....N) (5.14)

for some v > 0, where t; ={+2j)L;.

Definition 5.10 Let 0 € (1, +00), n > 20, and N > 2. We define the so-called
perturbation map Yper : ROF2IN Ei’o(R("H)N ) such that it associates balanced
configurations with a sequence of admissible perturbations. A sequence of perturba-
tion parameters (a;, ;) € £XR™DN) or (a;,r;) € €*R™DN) s said to be
admissible if the parameters satisfy
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(e%) For j = 0, the configuration parameters Tp’erl (@j,Aj) = (q,ap, R) € RN
is a balanced, that is, (q, ag, R) € Bal,(X);

() For j > 1, the parameters (a;, ;) € O (RWV+Dmy satisfy the set of relations
(5.10),(5.11), (5.12), (5.13), and (5.14).

We denote by (a;, A;) € Adm, (X) the set of admissible configurations. Notice under
(5.13), one can work indiscriminately with either parameter. In this fashion, we call
(0, 1) € £°R™DN) or (0, 0) € £2°RDN) the trivial configurations.

5.4 Generalized Delaunay Solutions

We now define a family of approximate solutions to the problem using the Delaunay
solutions from the previous section. From now on, we denote by y : R — R the
cut-off function such that

1, if0 < x| <
x(x)=10, ifl<x| <

x(x), if x| = 1.

First, one can always assume that all the balls B> (x;) are disjoint since we may
dilate the problem by some factor « > 0 that will change the set X into ¥ and a
function u defined in R” \ ¥ into x "7 u(xx ') defined in R"” \ k .

Definition 5.11 Let o0 € (1,400) and n > 20. For any L > 1 sufficiently large
and L = (L',...,LY) € ¢*@RY) and R = (R, ..., RY) € ¢*°(RY) such that
(5.10) holds let (a;, ;) € £2°(R™TDNY be its associated perturbation parameters.
Fix x; € X fori € {1, ..., N}, let us define the following generalized bubble tower
solution:

(1) (Spherical coordinates)

Ut Loajr (%) = ZU(x,-,Lé.,ag,xé.)(x)’ (5.15)
JEZ
and
A+ i . . .
U(xi,L,aj,lj)(x) = Z U(x,-,L’j,a},)Jj)(x)’ (5.16)
jeN
where
)\'l'_ Yo
Ui, i i, 2y () = ’- 5.17
w9 () o
with . ‘ -
Klj =R’j-672]L-f for jeZ
and

L;=L;i—jLi+InR, for jeZ.
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(i1)) (Emden—Fowler coordinates)

V(x,-,L,a_,-,lj)(t) = Z V(xi’L’..,ai.,)\’..)(t)’ (518)
jeZ JIT
and .
Vixi Laja) (@) = Z Ve Liai iy (@, (5.19)
jEN JIT
where . .
V(xi,Lé.,a;.,ké-)(t) = cosh(=In|x — x; —aj| = L})". (5.20)

These will be called the general (half) bubble tower solutions.

We also have the most basic definition of this section. We observe that although in
the definition the solution is indexed by (x, L, a;, A;), one should recall that the
configuration map from Definition 5.7 relates them and by the perturbation map
from Definition 5.7, namely (x, L) = (a(q, ao, R), A ;(q, ao, R)) and (¢, ap, R) =
(g(x,L),ao(x, L), R(x, L)).

Definition 5.12 Let o € (1, +00), n > 20, and N > 2. For any L > 1 sufficiently
largeand L = (L', ..., LN) e ¢ RY)and R = (R', ..., RY) € £>°(RY) such that
(5.10) holds let (a;, ;) € £ (R®+DNY be jts associated perturbation parameters.
We define its associated solution it (x,1..a;,1) € C®MR"\ X) as

N
e Loa;ap) (X) = )iy Laj ) (). (5.21)

i=1

Here
U(x;,Lajx)(x) = U(_:[,L,a_/-,lj)(x) + Xi ()P Lajr))(X), (5.22)

where U, (';i Laja)) € C?? (R™ \ ¥) is the generalized bubble tower solution given by
(5.16) and

O La; ) (X) = PLa; ) (x—x;) and x;(x) = x(x—x;) forall ie{l,..., N}

(5.23)
with @(L.q;.2;) the error function from Lemma 4.10. We say that u(x L.a;1;) €
C*(R"\ X) is an approximate solution to (Q2,, :), denote by i (x, L.a, .1 ;) € ApX, (X)),
whenever (aj,X;) € Adm,(X). We then define the so-called perturbation map
Yol : L°(ROFDNY 5 Co°(R" \ ¥) such that it associates balanced configurations
with sequences of admissible perturbations.

5.5 Normalized Approximate Kernels

In this subsection, we will use the aforementioned parameters to define a family of
projections on the (normalized) approximate kernels. At least for low Fourier eigen-
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modes, this family is entirely constructed by varying the parameters in the approximate
solution.

Definition 5.13 Let o € (1,400), n > 20, and N > 2. Assume that (a;,1;) €
Adm, (%) is an admissible configuration as in Definition 5.5 with i1y, Lajj) €
Apx, (X) their associated approximate solution as in Definition 5.12.

(a) Let us introduce some notation of normalized approximate kernels.
(1) If £ =0, we set
Zj0@j X)) = 0. U, 110 0ty
for the zero-frequency Fourier eigenmodes.
(i) If £ € {1, ..., n}, we set

D @A) = Ad Y]
Zje@js k) =259 Ui it aty = =200 U 15 aly-

for the low-frequency Fourier eigenmodes.

We denote by {Z;’Z(aj, A, j0eZs C CO(R™ \ ¥) the family of normalized
approximate kernels.
(b) Let us introduce some notation of normalized approximate cokernels.

@G1) If £ =0, we set
Zjo@j 2 = foWe i i i) Zj.0@; X));

for the zero-frequency Fourier eigenmodes.
(i) If¢ € {1, ..., n}, we set

Zje(@j,Xj) = fci(U<x,-,L§-,A;,aj->)Z},z(aj’ Aj)
for the low-frequency Fourier eigenmodes.
We denote by {Z'; ,(a;, A))}¢.j.0ez.. C CO(R" \ ) the family of normalized

approximate cokernels.

These normalized kernels satisfy some orthogonality conditions, which will be
important in applying a finite-dimensional reduction.

Lemma5.14 Let 0 € (1,+00), n > 20, and N > 2. Assume that (aj,A;) €
Adm, (X) is an admissible configuration as in Definition 5.5 with L_t(x,L,aj,;‘j) €
Apx, (X) their associated approximate solution as in Definition 5.12. Then, one has

) Ife e{l,...,n}, then

4(n —20)? _ iy
MO 200 (50 4 0tny) eI

(5.24)

fR Z5 @i A)Z p(ag, dj)dx =

where 8, ¢ is Kronecker’s delta;
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@ii) If € =0, then

/ Z} o(a; AN Zh (@, A p)dx = Co(1+o(1)e "o (5.25)
Rﬂ

for some Cop > 0.

Proof Initially, let us observe that by Lemma 4.6, the set of bounded solutions to
¢ = (~A) " (fy Wiy, 11 50 )9 =0 in R

is spanned by {7;’0(@, Aj), ... ,7;,,!(111-, Aj)}foranyi € {1,...,N}and j € N.
Without loss of generality, assume in the following that x; = 0. For £ = 0, we will
repeatedly use the following estimates:

1777 Vi, 1y iy (I D E ] < 1

, (5.26)
[ 727 ()7 if x| > 1.

7)o@, 1)) {
In addition, we have also have
Z () =2y, V. Inx)) 5 i —¥o—1 i
F @A) =2V g, (< Inlx) e x —af —xi x—aj—x,»)e.

Then, after recentering at x; = 0, it is easy to see that the following orthogonality con-
ditions (5.24) are in force. Similar estimates also hold true for £ = 0, the orthogonality
condition in (5.25) is also satisfied.

The lemma is then proved. O

5.6 Weighted Functional Spaces

It is convenient to define the suitable function spaces on which we will run our per-
turbation technique.

Definition 5.15 Leta € (0, 1) and ¢1, ¢ € Rsuchthat £; < 0 and ¢, > 0. We set the
weighted norm

||M||cg|.;2(w\>:) = || dist(x, )" ullce(p, ) + x]~Cullce @ g (5))-

In other words, one that u € Cg,;z (R"\ X) if and only if

(i) (Near the singular set) it is bounded by a constant times |x — x;|*' and has its
¢-th-order partial derivatives bounded by a constant times |x — x; |1~ for £ < «
near each singular point x; € X.

(ii) (Away from the singular set) it is bounded by |x|? and has its £-th-order partial
derivatives bounded by a constant times |x |22~ for £ < a.

Note that we are implicitly assuming that 0 € X, in order to simplify the notation.
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Definition5.16 Let 0 € (1,+00), n > 20 and N > 2. We define the following
weighted norms:

lullc, . ®n\2) = Nl Cringe; —yp +0),—n—20 R (5.27)
and
IAlle,, .®ns) = 12C, r 20 (R)> (5.28)
where
— Y5 < &1 < min{—y, + 20, 0}. (5.29)

Here 0 < 7 < 1 small enough is given in the definition of the perturbation parameters
(5.13) and (5.14). In this fashion, we denote by Cy  (R" \ ) and Cyy  (R" \ X) the
corresponding weighted Holder spaces.

Let us make some observations regarding the last definition.

Remark 5.17 We emphasize that to simplify the notation, many times we will
ignore the small perturbation and just the weight near the singular set as dist
(x, £)~4, dist(x, )27~ respectively. The weights in Definition 5.16 are suitably
chosen to guarantee the invertibility and Fredholmness of the linearized operator
around approximate solutions on weighted Holder spaces; this will be clear in the
reduction method we apply in the remaining subsections.

5.7 Perturbation of the Approximate Solution

This subsection is devoted to performing a perturbation method based on the approx-
imated solution, which requires linearizing (Q) ».5) around the approximate solution
(5.21) and estimating both the weighted norm of the right-inverse for the linearized
operator given by and the associated remainder error. We emphasize that the balancing
formulas and the orthogonality conditions for the normalized kernels discussed above
will be building blocks of our construction.

Let us explain our strategy in more detail. First, we consider the nonlinear operator
defined .4, : CO(R" \ £) — C>°(R) given by

No) =u— (=A)"7(fo ou). (5.30)
Notice that (Q) s.x) can be reformulated as
Ne(w) =0 in R"\ X.

Next, by linearizing this operator around the approximate solution, we find a linear
operator Z [ii(x.L.a;.1,)] : CO(R" \ £) — C** (R" \ £) given by

Lolite,Lajip)@) = ¢ — (=A) 7 (f; 0 li(x,L.a;,1/)P- (5.3D)
For the sake of simplicity, let us denote

Lol Lajapli=%6(x,L,aj, Lj).
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5.7.1 Quantitative Estimates

Our first estimate concerns the nonlinear operator defined as (5.30) applied to the
approximate solution it (x,L.a;.1,) € C®(R™\ %) given by (5.21), namely

No(x,L,aj,\j) = N (il (x La,.1,)
=ix,La; ) — (=8)"7(fo olix,Laj 1))
We emphasize that we must suitably choose the weighted norm in (5.28) so that our
following estimates have the correct decay.

Lemma5.18 Let 0 € (1,+00), n > 20, and N > 2. Assume that (aj,A;) €
Adm, (X) is an admissible configuration as in Definition 5.5 with L_t(x,L,aj,;‘j) €
Apx, (X) their associated approximate solution as in Definition 5.12. Then, there
exists a weight £1 < 0 satisfying (5.29) such that

ING (. L.aj. Aplle,.,@ns) S e 7t (5.32)

for some & > 0 uniformly on L > 1 large.

Proof For the sake of simplicity, we shall prove the estimate in (5.32) for the
L°°—norm. Namely, we need to quantitatively estimate the term |45 (it (x,1.,0,1))| and
then a applying a classical perturbation technique.

The rest of the proof will be divided into two cases.

Casel: (a;,A;) = (0,1) forall j € N.
In this case, the approximate solution i (y,z.9,1) € C*°(R" \ X) is given by

N

Ux,L,0,1)(X) = Z Z Ut.zi 0.0y ) + Xi ()i (x = xi) |

i=1 | jeN
where

AL Yo
U. ;ig,i(x):= - .
(xi, L5,0,25) <|)Jj|2 + |x — x; |2

Without loss of generality, assume x; = 0. Before we prove the estimate of
| A5 (i (x,L,0.1)) |, we first prove the following claim:

Claim 1: The following estimate holds

Ix — x;[517 20 Ve LU+E) - if 0 < d(x, T) < L

27
1Dy (it (x,.0.1)| S e 77 EIHD), if § <d(x,®) <1,
x|~ (#2900 LATD i d(x, ) > 1,
where N
Do (iige,L.0) = Y ) fo Wiy, i 0.36)) = fo liice.L0.1)- (5.33)
i=1 jeN '
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As a matter of fact, we proceed by a direct estimate in terms in the asymptotic behavior
of the bubble tower solution. Without loss of generality, assume x; = 0. The proof will
be divided into three steps: the exterior, transition, and interior regions, respectively.

Step 1: If d(x, ) > 1, then |Dg (it (x,1,0,1)| S x|~ (1420) g = Vo LU+E)
In this region, we notice x;(x) = 0 forall i € {2,..., N} when d(x, ¥) > 1. Next,
using that
i\ Yo
Ui 10,009 (O ~ (’VJ) Ix|~®729) a5 |x| > +o0
L A

and recalling the relation in (5.10), we have

n+20

n-20 N n+2o
— n—20
Do (e, 2.0.0)| = €no ZZ Ut Li.0.0) -2 UL 0.40)
i=1 jeN i=1 jeN '
(1—20)L atlo
n— —
< (e—f|x|—(n—20)>” 20
2L oo
Se 7 |x|T02),

which finishes the proof of the first step.

Step 2: If% < Ix| <1, then | Dy (it (x,1.0.1)| S e 7o LU+E) for some £ > 0.
In this case, it is easy to verify the estimate

1Dy (it (x.1.0.1))| S e Ve LUFE)

for some & > 0.

Step 3: If 0 < |x| < 1, then Do (it(x,1.0.1)] S |x — x;|1727 7o LU+E) for some
£E>0.
Notice that x1(x) = 1 and x; (x)0 fori € {2, ..., N}. By definition, it follows that

Ux,L,0,1) = U(n,L},O.A;) — (=X + Z Z U(X[,Ls_,o,,\;) + Xidi

i=2 \jeN
-2 Utar.Lh0.4):
JEZ\N
Hence, by an easy computation, we obtain
n+2o
n+2o n=2o
Do (e, L0,0)| S | YW, L0 = Y U, IRSURACCH Yo (146))
jeN jeN
+ O(e_)’rr(l"ré))
S Wi, 10007 7 €T+ O
jeN
I = ~voL — o (14)
1™ Z o oane O ), (5.34)
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where
V(xl,L;.,O,)L})(_ In|x[) ;= Veph(=1In|x| — Ly —2jLy)

and we recall that the spherical solution vgpp is defined as (4.13).
Furthermore, it is straightforward to see that when 0 < |x| < % there exists £ > 0
and ¢ < O satisfying

_4o
n—20

x|~ § Vi ztoah (—Inlx]) < e Sl (5.35)
A AR |
JEZL

Indeed, if —oco <t < L there exists C; > 0 such that |x| < Cy and
2 Vet oah (= Inlxl) < Cre77 b, (5.36)
JEZ
Also, if L1 <t < 400, there exists C» > 0 such that |x| < Cge_Ll/2 and
> Vet oay(—Inlx) < Ca. (5.37)
JEZ
Finally, combining (5.34) and (5.35) implies

| Do (i, 1.,0.1))] S [x[51727 777 1F6),

which finishes the proof of the first claim.
We now proceed to the proof of our preliminary estimate.
Claim 2: The following estimates holds
|x — x;|mine1—T. Yo+t o=ye LA+ - if 0 < d(x, ) < %,
| NG (W (x.La; )] S e Vol U+8) if% <d(x, %) <1,
|x |20 e~ Vo LA+E) ifd(x, ) > 1.

As before, the proof will be divided into three steps as follows:

Step 1: If d(x, X) > 1, then | A4 (ii(x.1.0.1)| < |x|20 e Vo LU+E)

Notice that x;(x) =0 foralli € {I,..., N} and x € R" \ X such thatd(x, ¥) > 1.
From this, we get

N (i(x,L,0,1))
=i(e,L,0,1) — (—A) 7 (fo(l(x,L,0,1))

N
=222 Ut 0y (00 = (=87 fo (iie Lo.)

i=1 jeN

N
= /R A W 00y 00 = FolieLon ) | Ro(x = y)dy

i=1 jeN
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= . Dy ((x,L,0,1)(¥)Re (x — y)dy

( / + / + f )Dg (e.Lon ()R (x — y)dy
[yl=l1 I<|yl=]x] (=[x
Iy + Iy + s,

where we recall that D, (it (x,1.,0,1)) is given by (5.33).
Applying Step 1 of Claim 1, we have

il < e—M”“/ v — POy S P (),

lyl<t
] S 771 / v — yI" 72y TOdy S [P eTr HD,
I=lyl=lx|
and
|l S e 9 f v = Py Ty S x| e ),
[yI=lx]

Combining the above estimates, we finish the proof of Step 1.
Step 2: If 1 < |x| < 1, then | N (i, Loaj 0 )] S e 772149 for some & > 0.
In this case, it holds
No (U(x,L,0.1))
= i(x.L.01) — (=A)" 7 (fo(l(x.L.0.1))
N
= Z Z U(xl.’L;’O,A;) + x161 — (=) f5 (#x.L.0.1))

i=1 jeN

= / Do (li(x.1.0.1) () Ro (x — y)dy + e 1oL+
Rn

= (/ +/ +/ +/ )Du(ﬁ(x,L,O,l))(y)Ra(x — y)dy
i<l JE<py<t Jigppi<2ixl Jiyl=20x

+ O LU+
=: Doy + Iy + In3 + Iog + O(e 77 LU+,

Applying Step 2 of Claim 1, we get

b1l S e%“”@/ =Py dy
lyl<5

< Jxffre v LUHE) < o Yo L(14),

|| S e v kD) / lx — y[? " |yS 2 dy
bl<jyl<1
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< |x|§172<TefyaL(l+é)/ Ix — y|2°dy < e Ve LUFE)
ly—x<3
3] S e HIHD) f e =y |y T dy
1<ly|<2lx]
< e—ygL(1+S)f v — y[27dy < et LU+
ly—x|<3lx|
and
|la] S €77 HIHD) / = yP7 " |y T dy
lyl=2lx]

/S |x|2tf—ne—y(,L(l+§)/ |y|—(n+2a)dy /S e—ygL(l+E).
[yl=1

Consequently, the proof of Step 2 follows.
Step 3: If 0 < |x| < 1, then | A5 (iix,1.0,1)| S |x[1Te 7o LU+E),
Similarly to the previous steps, we obtain
N (U (x,L,0,1))
= U(x,£,01) — (=A)" 7 (fo (U(x,L.0.1))

N
= Z Z U(x,-,L;,O,)L;) +¢1 — (_A)iafo (’/_l(x,L,O,l))

i=1 jeN

/ Dy (it (x.1.0.1) ()R (x — y)dy 4 e Vo LT
]Rn

( / + / + / + / ) Do iix.2.01) () Ro (x — y)dy
MS% %slylsmxl 2lx|<|yl<1 ly|>1

+ O(e 1 LU
=: I31 + I3y + D33 + I34 4+ O(e 7o LI+,

Applying Step 3 of Claim 1, we get

—yo L(1 20— -2 v L(1
Il S €0 [ ey Py £ e 0
yi=5

|I32] < e—VoL(l+$)f Ix — y|20—n|y|§1—20dy < |x|§1e—yaL(1+§)’
Bl<pyi<2px]

|I33] S e Yo b9 / lx — y|2 " y[S 20 dy
2|x|<ly|=1

< VLU 6 / y[dy < [x[ITe Yo LU+
2xl<lyl<]
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and

|I34] S e 7o L0FE) / it — y[20 7y~ 200 g,
|yl=1

< e%L(Hé)/ y[~+2) dy < Vo LOHE).
lyl=1

Therefore, for |x| < %, we conclude
| Ao (lir,L.00)| S x| Te 7 LOFD),

which gives us the desired estimate in Step 3.
By combining the last three steps, the proof of the first case is concluded.
Now we consider the case of a general configuration. We will use a perturbation
technique based on the last case in this situation.
Case 2: (a;, ;) # (0,1) for some j € N.
Initially, we will prove the following decomposition.
Claim 3: It holds that

| Ao (Ux,L.a;0)) — Ao (x,L,0.1)]

N
— / / i
= ZZ(—A) ’ [|fa(U(x,-,L§.,a§.,A§.)) - fa(U(xi,L;,o,x;)N (|3r; Ut Liai 2y 1175

i=1 jeN

n
+ Z |8a§l U(Xg,L[l,aj;,)\’é) | |a5‘,£ |>:|
—ZZ( A)” “[w D (e, L.0.1) 17" |+Z|8' D, (M(xLOI))||a]e|]

i=1 jeN

where

N
Do (iige.r.0m) = Y Y fo Wi, 1igi siy) = Folie.L01)- (5.38)

i=1 jeN

To prove this fact, we will differentiate .45 (it (x, 1.,0,1)) With respect to the parameters
r ,a i Since the variation is linear in the displacements of the parameters, we vary

the parameter of one point at one time. First, with respect to " i we have

_ o -
3,;«/‘{7(14(x,L,0,1)) = 3,;‘_ U(x,.,L;,,ag,,\;) —(=4) “(fg(u(x,L,o,l))f‘),;: U(xl-,L;,a},/\ﬂ-))
i, .
=(=4) U[(fa(U(x,.,L;,af,.,x;)) ~ Jo e L.0.0)0,i Upyy 1 ai iy
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Second, with respect to a; ¢ WE obtain

Ot Ao (lix.L.0.1)
n
= (- [(f;(Uu,-,L_‘;-,a_?,xf,-)) ~Jow o) ) aafkﬁeU("f’“’“z’*i)} .
=1

This fact concludes the proof of Claim 3.

Next, we shall obtain L®°-estimate in the sense below. We first consider the case
of the parameters 7.
Claim 4: The following estimate holds

5. B (@ )’ < Jd@, Zymin{er—yo+1}=20, =¥ LU+E) - if 0 < d(x, T) < 1,
ri Yo M@ LAY~ x|~ (1120) o= yo L(148) if d(x, X) > 1.

As before, we consider two cases separately.
Step 1: If d(x, ¥) > 1, then

_ _ _ —vtl
[ft;(U(x,-,Lé.,aj.,A;)) — fé(u(x,]"(),l))]ar}'_U(xi’L;’ai_’A;) < |x| (n+20) ,~yo L(1+£) , Vi,

for a suitable choice of v > 0.
As a matter of fact, we have

/ ;-
[fa(U(x,»,L;,a;,A;)) —fs (“(x,L,O,l))]ar}l U(xi,L;,a;.,;\;)

~

4n
< (e—yaL|x|—<n—2o))n*20 Vo L@jHD | ~(1=20)

< |x|—(n+20)€—y(,L(l+E)e*Vl;’

which by (5.13) and (5.14) concludes the proof of this step.
Step 2: If 0 < d(x, X) < 1, then
[f(;(U(x,»,L;,a;'.,k;)) - fé ("_t(x,L,O,l))]a,}'_ U(x,-,L;,a;.,)»;)

< d(x, E)miﬂ{—ya-i-fqé“l}—206—VoL(1+$)

for some —y, < {1 < min{0, —y, + 20} and 0 < v < 1 small enough.

In this situation, we may assume without loss of generality that |[x — x;| < 1 for
i € {2,..., N}. Hence, we proceed similarly to the proof of the estimates (5.36) and
(5.37) to find

(o Wi i ai piy) = fo @010, Uy 1 ai i

n+20
n—2c

She=xi| YoV i (—Inlx—xi) | e D
~ (x;, L', 2" a')

. A

jeN

25— —vtl
< |x—xi|£' 20 o =Vo L(148) , V15

~
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for a suitable choice of v > 0.
Again, we have more two cases to consider. If |t — t}.| > Ly, it follows

/ ! =

o Wi 1 at i) = Jo e L0018, Uty 1 ai s
/ S / S —YoL
S FoWe i) | 20 5o ot afaip) +e7
l#j
< |x|7n+20 Zvni{én R V4 +|X| 2(1’ n— 20 efygL
oy (xi, L i 30 (e Lyag.h) (x/ L0 ai)
J
< |x [T el Ze*(sz*ﬂ)hffﬂe—yglt—tél F |x[520 x[f 2N o L

(£
—nle=til |x|a—2ae—vt§) o Yo L(148),

<

if 0 < 1 < 20 is chosen suitably. Whereas, if |t — té| < L for some £ # j, one has

[fé(U(x,-,L;,a;,k;)) f (Lt(x L.0, 1))] (x, L’ a )J)
/
S o (U(xi,Li.,a;'.,A;))ar}" U(xi,L;,a;.,;\;)

40

n+20 —
< |x|” EV"#“---V Y
- o elear) i, Lj.ajhj)
J
< |x|—yae—nlr—t}lenlt—tj-le—yo\z—z_,|e—2a|t—z;j|

< |x|_7 —nlt— tl e Yo L(1+6)

if 0 < n < ¥, is chosen small enough.
In conclusion, by combining the above two estimates, we get

[fé(U(xi,Lf',,a;,xz',)) — fo e L0010 Uy, 11 ai 3

< x| e Ve LU |y 61720 o ye L(14E)

for 0 < |x| < 1, which implies

[fé(U(xi‘L;,a_’}.,)»;)) —fs (ﬁ(x,L,O,l))]arj, Ut Lisai i)

5 (d(x, 2)_%d()€, E)T +d(x, 2)51—25)6_y0(1+e§)
< d(x, E)min{—ya+r,§|}—208_%(14_&).

The proof of this step is concluded, and so is one of the claims.
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Claim 5: The following estimate holds

5. B )‘ _ |G, mymintermredTi =20 oo LAYE i 0 < d(x, ) < 1,
aj, T M LODI S | —0420) -y LOHE) if d(x. T) > 1.

The estimates are similar to the ones in the last claim, so we omit them here.
As a combination of these estimates, we have our main conclusion.
Claim 6: The following estimate holds

| Ao (i (x.L.a;0)) — No (i x,L.0.1)]

- d(x, ymintei—t.=vo+tle=vo LU+E) - if 0 < d(x, ¥) < 1,
~ x| T 20) e o LUHE) ifd(x, ) > 1.

To prove this claim, we plug Claims 4 and 5 into Claim 3 and proceed similarly to the
proof of Claim 2.

Finally, using the definitions of the weighted norms in Definition 5.16, it is straight-
forward to see that (5.32) is a direct consequence of the last claim.

The lemma is finally proved. O

5.7.2 Finite-Dimensional Reduction

We apply a finite-dimensional Lyapunov—Schmidt reduction to solve an auxiliary
linearized equation around an approximate solution. As usual in this method, we use
the orthogonality properties of the normalized approximate kernels and cokernels from
Lemma 5.14.

Lemma5.19 Let 0 € (1,+00), n > 20, and N > 2. Assume that (aj,A;) €
Adm, (X) is an admissible configuration as in Definition 5.5 with I/_t(x,L,aj’)vj) €
Apx, (X) their associated approximate solution as in Definition 5.12. Then, there
exists a weight {1 < 0 satisfying (5.29) such that for any h € Cyy(R" \ X), there
exists {c;’z(aj, A}, j.0eZ. C R and a unique solution ¢ € Cy (R" \ T) to the
following linearized equation:

N n
Ly Loaj A (@) =h+Y Y Y c (@ A)Z} (a;. X)) in R"\Z,

i=1 jeN £=0
/Rn $Z; (@ x)dx =0 for (i, j. ) € Ino.
(‘C/Za,a,k)

Moreover, one has the estimate

lolle, . @) S ke, ®\5)-

uniformly on A < 1 large. In what follows, we shall denote this error function by
Dx.Lajr))-
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Proof First, by multiplying equation (ﬁ/zg’ ) by the normalized approximate coker-
nels 73,’ ¢ (@, X;) given by Definition 5.13, and integrating over R", it follows
/ o= TS e n.ay.2)9)] fé(U(x,./,L;f,x;’,,a;c DZY @), X))dx

— / i’ ARV
B / oWy it a2 @) h)dx

N n
EI @ N [ U, )7 X2 A,
i=1 jeN =0 R A
(5.39)

They simplify our notation, let us set
10 = /R” [¢ - (_A)_J (fo/' ('Z(x,L,a‘,-,l_,‘))‘ﬁ)] fo/' (U(x,-/,L;’,A;’,,a;'/))zj",f’ (a/j" X/j)dx
and
I = / hf, (U(Xﬂ’ L gl ))z;.,’ p(@, ))dx.
R" VAV
In the next claims, we will estimate the two terms above based on the orthogonality
conditions from Lemma 5.14.
Claim 1: The following estimate holds

[Ip] < ||¢)||C*VT(R,,\2)€_V0L(l-‘ré)e*(gl*T+Vn)l‘}/.

Indeed, it is not hard to check that the approximate kernel Z;l, v (a/j, )Jj) satisfies the
linearized equation below:

i’ ARy ’ i’ /a7
A2y @3 ) = So Wi, s )2y 0@ 1) =0 RIAE,
we have
IO:/ fc;(U(x,/,L"./,Af.’,,af.’,))‘ﬁz}/,e/(aj’lj)
R7 JIT
— (=AY (L e Lay ) (— D) ZE, (@ N )dx

_ / /= i’ ARV
- /l%n |:fo'(U(xi/,L.l‘/,,),;/,,ai/)) - fg (u(x,L,aj,Xj))] ¢Zj/’[/(ajv A'J)dx

i

ol L0 31 e B
Bi(x) B SR L B

i#i!
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’ /= i’ ARV
I:fd(U(x,'/»L;//)\;//sa;//)) - f(r (M(x,L,aj,lj)):| ¢Zj’,l’(aj’ xj)dx
=: Io1 + lo2 + lo3.

Without loss of generality, assume that i’ = 1 and x; = 0. First, we consider the case
when ¢’ = 0. Recalling the estimates for Z;, ol@j, dj) from (5.26), we get

[lo1] =

f [f;(U(x_, ) = I <ﬁ<x,L,aj,xj)>] $Z% (@) N )dx
B U

< lblle,..@ns) /
B

— fy (e, Laja )| X[ 28 (@), M)l dx

!
oWy 1 i)

+2rr

40
¢ n—20
S ||¢||c*,f(Rn\2)/ x| 2V E Vi, A 7 dx
i’ j/ j/’ j/ ]#]

By

400 Clo
—(C1+Yo)t, n—20 A
/S ||¢||C*,f(R"\E)\/O e G1+vs vj, Z V()C,',Liaa’,'v)‘l/)dt
J#i o

N ||¢||c*,,(Rn\z)e_y°L(1+g)€7(§]+ya)l/’,

since {1 > —Y,. Next, it holds

[ (X 7, LI )\l l/)) - f(;' (lz(x,L,aj,A_,-))] ¢Z§‘/’g/(al//'v A'/j)dx

Hoz| = Zf

i#1 By (xi)

< ldlle, . @n\x) Z/

i#1 Bi(x;)

13 ige,Lag )| 178 @) W)l = i€ dx

i )

(X/L /\’

—2, i’ -
<||¢||C“(Rn\2)2/( )|x—xi|§1 G(}Jj,)V Z (i Lid A,)( In[x]) | dx
i1 B jeN

s ||¢||C*’r(Rn\E)()Lj/))/rre—(n+§1—20)L

i,_ -~ B i
< ||¢||C*_,(R"\E)e§ltj/ 2ys L §1Le (§1+Va)tj/

- @1yt
5 “‘P“C*J(Rn\z)e y“L(1+§)e 1 12

In addition, one has

o3| = / N [f/(U PR )_f/(ﬁ(x,L,a-,x-))i| 670, (@ M )dx
R\ || By (x;) o G LA ag) o Joh A AR
i=1
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—(n—2 —(n+2 i Vo ,—2
< Idlle, .z f v x| 72 x| TR L )Y e 20
R\ L] Bi(xi) ‘

i=1

il —20L —(C1+yo)tl,
S Iglle, . @mzye 7 e i’

S 9le.  qnme 7 e T

where we have used —y, < {1 < —y5 + 20.
On the other hand, from (5.26), we recall

! 2
25 p @y ) = Olbx—=xp |77V o (=) T for € e {1,....n).
J 1

i’
i
Xl-/,Lj/‘

Using the last identity, one can get similar estimates to the ones above. In conclusion,
it is straightforward to check

[Io| = M;“ [¢ — (=A) 7 (fy (ix,Loaj 2 )D)] f(;(UW,L;//,\;//,a;//))z}/,p(a'j, A)dx
- —(C1+yo)th
S liglle, . ®n\x)e Yo L(145) 561 7,

which proves the claim.
Claim 2: The following estimate holds

7( + D')ti-//
1L S lhlle., ,@nsye @7

In fact, we have

_ / i’ ARV
|I]| = ‘An hf”(U(X,-/,Li_/,k;/,,a;//))zj/’e/(aj’ X])dx

_ I A VI (YA i
S / IBle,, . @z lx = x| 77 [x — x| 77 (e I"+e j ) dx
By (x;r

— _Vntij/
+) Illc,. . @ms)lx — x5 e "7 dx
l‘;ﬁ[/ By (x;)
—(n—2 —4 —(n—2 _Voli-;
+/R N IAlle.,...®mns)lx] (=200 x| 740 |y |7 (17200 TP i g

n\_l_llBl(xi)
< h _(fl_f‘i‘}/{r)li-//
S lhlle,, . @ x)e 7,

which proves the desired estimate.
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Claim 3: The following estimate holds

N n
>3 e 107 a3
i=1 jeN{=0 C**‘Z(Rn\2>

Se LD ge, @) + hlle,. ,®@n5)-

As a matter of fact, we first isolate the term c’j (aj, Aj) in (5.39) by inverting the
matrix

/R WU 0 )70 A Z) ) X

For this, recall the orthogonality estimates from (5.24) and (5.25), which yields
/Rn f(;(U(Xi’L;’AS.’a;))Zé’e(aj, M)Zh p(aj, A j)dx = Codepr for € €{l,...,n},
and
; ; —vo |ti—1t, .
/Rn oW 1t st ai)Z). @) A)Zjy plaj, djdx = Ofe™” T i el

plus a tiny error. Then using in [44, Lemma A.6] for the inversion of a Toepliz-type
operator, one has from (5.39) that

' - —(Q1—T+ye)t
It (@i A1 S e g, @) + ke, @nzyle €T

+ Y e g, @)
J#]
+ 1Al . nygyle 7o oIyl m Gty

S e 7 H D glle,  @nx)

+ |k ”C*H(Rn\z)]eﬂfo(1+0(1))|fj*t_,'/IE*(Cl —T o)t .

Using the estimates (5.26) of Z; ¢(aj, X;) and its equation, we split the integrals as
in Step 3 in the proof of Claim 2 in Lemma 5.18 and get in By (p;),

EANCIR NIE(C R AR EA TR )
<lx— xi|—y<,+2c;ef<ya+2a)|t_;,ft_’,~| <lx— xi|;1_ref(ya+2a)|z_‘,.,ft_;l_
The above two estimates yield that
‘ ' —tr,—voL(1
Ich @i, AN ZY (@ A1 S e — x| E ) g lle, L goys)

Pt
¢t~

+ lllle,, . @ x)le
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for some ¢ > 0.

N
For x € R™\ |_] Bi(x;), one has
i=1
I (@ AN ZY @y LS )7 x| 702N (a0 )
S x T2 EI D g6, e xy
o

—c|tt,—t"
+ ll2lle,, . @mxz)le "7 7

Combining the above two estimates yields

N n
Y XN @i ANZh @) h )

i=1 jeN £=0 Coxr (RM\T)
—y, L(1
Se LD ge, @) + ki, , @ 5)-

The proof of the claim is concluded.
Claim 4: It holds that

I$lc,.@nz) S ke, . @n\x),

uniformly on L > 1, where

n

h=h+Y 33 "¢ @ A)Zh (aj.x)).

i=1 jeN £=0

We suppose by contradiction that there exist sequences of functions {Ek}lieN C
CoreR" \ £) and {¢rlken C Cur(R" \ ), where ¢ = (L (a, X)) (hy) for
all k € N such that ||¢llc, , &) = | and

Iklle,, .mms) — 0 as k — 4oo. (5.40)

Here we can write

N n
l’_lk = hk + ZZZC;{;(“]} XJ)Z;"IZ((I], A,j),

i=1 jeN £=0

where {c}}ken C C®(Admg (£)), fihken C Con e (R"\ T), and {Lihen C RY
such that
max L}; =:|Lg| > 400 as k — 400
1<i<N
is a sequence of parameters.
Notice that

bk = (=D (fy (e L.a;0)P) + e in R\ X
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Thus, we need to estimate the first term on the right-hand side of the last equation.
Step 1: If d(x, £) > 1, then

(=) (fiix.La; 00| < oD lgkllc,., @nsylx] ™" 727 as L — 400
Indeed, notice that
(=) (fy (e, Laj 2 ) Pk)

= |:/ +/ } Jollix.L.a;0;) Pk Ro (x — y)dy
d(y,2)=1 d(y,2)>1
=11 + b».

Let us start with estimating the second term on the right-hand side above. First, by
Lemma 4.10, we have

(e, La; o (3) = 0@ 7 )y[7" 2 for d(y, %) > 1,

from which we conclude

L < e gelle, @) [d o DRy
y,2)=

<o ligklic, , @mzlx|~" 2. (5.41)

For the first term, we get

N
I < _ _—20'
1 |y — xi
i=1 ly—xil=<1

_2n
n—2o
—(n—2
Z V(x"’Lf*“Q’”})(_ln 1<) lpklic, . @msyly — xil% x — y|~=27dy
jeN ’
S ||¢||c*,r(R"\>:>|x|7(n72g)/ |y — x|
[y—xi|<1
Z V(xi,Li,a;,A",.)(— In'[x]) dy
jeN ’
’ +00 ,
S ||¢||C*J(Rn\z)|x|_(”_ 0)/ e~ (nt01-20)t
0
_2n
n—2o
Z V(x,',L;,aj,A;)(_ In |x[) dt,
jeN
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which implies

I S eIl T2 g e, @ns) S oD ldklle, , @) lx1 72,
(5.42)

Since ¢; > —y,, by combining estimates (5.41) and (5.42) one concludes the proof
Step 1.
Subsequently, using Step 1, we also observe that by the estimates above, it holds

sup "2 1¢ (0] S Igllc,. . @z + oD ligellc, , @mzy — 0 as L — +oo,

d(x,%)=1

(5.43)

where we also used our contradiction assumption (5.40). Hence, one can find x; € ¥
for some i € {1, ..., N} such that

1
sup |x — x;| " (x) > 5 forall k e N. (5.44)

lx|<1
In the next step, we prove an estimate contradicting the lower bound above. To simplify

the notation, we assume that x; = 0 and so |x| < 1.
Step 2: If |x| < 1, then one find R > 1 large enough such that

(= A) 7 (fo i x,La; 0,) P00
SoMlglle, . @mx) X[ +e 7R 4 e72Rx[9 as L — +o0.

As a matter of fact, similar to before, we have
[(=A) " (fy (i x.Loaj2 ) P0)]

= [/ +/ ] foliix L.a;2)) Pk Ro (x — y)dy = I + .
d(y,2)=l1 d(y,X)=1

In the same spirit of the estimates for h above, it holds

n< / Y x — y PP gl ey Y02 dy
d(y,Z)=1
S oM lgelie, , @ms)lx].

For the second term, the computation is slightly more involved. We proceed by per-
forming a standard blow-up method. Namely, let us consider the family of rescaled
functions q?,’k : A’j’k — R defined on the annular region as

. N\ =< .
ij”‘(;%):(%) " g(Hig) for ke N,
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where

Ai.’k ={xeR": A'Jk < x| < A;’fl}.

Tik _ ik ik ik _ [yik ik
Here we set A} = A7 /Aj , where AT = AT A for k € N and observe
R\ A >0 as k — +oo.
Furthermore, it is not hard to check that E?/" € CO(AI;k) satisfy the following rescaled

equation:

=ik
i o
¢[]k — Cn,o Zt%g Aﬂ W Rg (x — y)dy(l + 0(1))

= @S maRe e i AV
ik g o ik ik ikyy i Ay qa
./]R” ¢j [fa(U(O,Llj’k,)Llj'k,a;-'k))zj»e(kj ,aj )](ij)dx
=0foriefl,..., N}, j,keN, and € € {0, ..., nj.

Now, we observe the estimate below holds

o
7] S ||hk||C**’,(R"\E)|)~lj 0729 a5 k — 4o0.

Then, there exists (/5’100 el (A;’Oo) solution to the following blow-up limit equation:

3% = ns [ [ Wane08; 0] Rat =)y =0 in A,

/ ¢ £1U0.1) 2550, Ddx =0,

Here .A;’oo = UkeN.A;-’k is such that $;k — 5;00 as k — 400 in Ag, where the
annular region Ag := {x e R" : R~! < |%| < R} issuchthat Az C Ai-’oo for R > 1
large enough which will be chosen suitably later, where we recall that U(g, 1) = usph is
the standard bubble tower solution given by (5.2) and Z;”]z (@j,Aj)forl €{0,...,n},
are the corresponding kernels in Definition 5.13. Therefore, by the nondegeneracy of
the standard bubble in Lemma 4.6, we conclude that the blow-up limit is trivial, that
is, $j’°° = 0 and qu\'j’k — 0as k — +ooin Ag.
As a consequence, if we consider the original ¢, this is equivalent to the uniform
convergence

X[ r(x) = 0 in AZE as k- oo, (5.45)

where ALK = UjeNAlj’k and A’j’k = {R’l)\'j’k < x| < R)»f/’k}. Using the conver-
gence above, we can now estimate the remaining term

L= / follix L.aj )Pk Ro (x — y)dy
d(y,2)=l1
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S Z |:/.Ai’k +/(Ai,k)c:| JoGix,La; )P Ro (x — y)dy =: Iy + I,
j j

jeN

where (A7) :={y e R" : 0 < d(y, T) < 1}\ A}~
First, again from Lemma 4.10, we know

e Loy o)) = 51777 | D Vi gt sy (Gl | L+ 0(1) for 0 <d(y, =) <1,
jEN 770
from which we get

— UR . "k
D Vs Liai ity (I XD S 778 in (AL
jeN

Hence, the summation on the left-hand side of the last equation can be made small
enough by choosing R >> 1 large enough but uniform on k£ >> 1, which in turn implies

Iy S ek /w Y1727 N llc, ey [y b — yI"727dy S e |x 1.
K

Additionally, from (5.45), it is direct to see

2n
n—20

sy / BT = g PTT TV g g (< T x]) dy
jeN Aj jeN c

< o(l)/ IS =y dy
Aﬁk
J
< o(D)]x [
The proof of this step is then finished.
Finally, from Step 2, we must have |x| % ¢y (x) = o(1) as k — +oo, which is a

contradiction with (5.44). This completes the proof of Claim 4.
Claim 5: For any /1 € Cys - (R" \ X), one can find a unique solution ¢ € C, - (R" \ )

/
tO. (‘C2U,u,l)' .
First, we consider the space

AR = {¢> € H*(R") : /R ¢>7§.,e(a,», Aj)dx =0 for (i, j, ) € Ioo} :
Notice that Eq. ([726’ «.) May be reformulated in terms of ¢ to become

b+ H(P)=h in AR, (5.46)
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where /1 is defined by duality and % : JZ-(R") — - (R") is a linear compact
operator. Using Fredholm alternative, showing that (Uza, ) has a unique solution for

each £ is equivalent to finding a unique solution for 2 = 0 to (5.46), which in turn
follows from Claim 4.
The proof is now a consequence of Claims 4 and 5. O

As a consequence of the last result, we can state the last lemma

Lemma5.20 Let 0 € (1,+00), n > 20, and N > 2. Assume that (a;,Aj) €
Adm, (X) is an admissible configuration as in Definition 5.5 with ﬁ(x,L,a_,-,xj) €
Apx, (X) their associated approximate solution as in Definition 5.12. Then, there
exists a bounded right-inverse for the linearized operator (Z5(a;, A j))_1 : Core r (R
¥) = Cyp.: R"\ X). Moreover, the following estimate holds

lolle, . @nxs) S 1% (a;, Xj)_l(¢)||c**,,(Rn\z)-

uniformly on L > 1 large.

5.7.3 Fixed-Point Argument

We prove our main result using a standard perturbation method. The main idea is to
apply a contraction theorem for the operator N, (x, L, aj, X j)(¢p) = Ny (U(x,L,a;2))t
¢) on the suitably weighted norms introduced in Definition 5.16.

Proposition 5.21 Let o € (1, +00), n > 20, and N > 2. Assume that (aj, ;) €
Adm, (X) is an admissible configuration as in Definition 5.5 with ’Z(x,L,a_,-,xj) €
Apx, () their associated approximate solution as in Definition 5.12. Then, for L >> 1
large enough and ¢ < 0 satisfying (5.29), there exists {c’j’g(aj, A}ij ke, CR
and a solution ¢ € Cy (R" \ X) to

N n .
NoGe,Loaj, Aj) (@)=Y > > ¢ (ajA)Z; (aj,Aj) in R*\Z,

i=1 jeN ¢=0
/ ¢Z; (@i xjdx =0 for (i,j.0) € In,
Rn
(Q/Z(r,a,l)
where {7;’3 @j, X))}, j.00ez C C%° (R™ \ %) is the family of approximate normal-
ized corkernels given by Definition 5.13. Moreover, one has the estimate

Vo 1
6. L.a;0plle, . rns) S e LS

for some & > 0 depending uniformly on L > 1 large.

Proof According to Lemma 5.19, the solution operator (%, (a, 1))~ : CO(R*\ ¥) —
C?% (R™ \ £) defined in Lemma 5.20 is well defined. Notice that Ux,L,aj;) + ¢ with
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¢ € C«(R" \ ) solves equation (Q5, , ;). if and only if, it solves the fixed-point
problem below:
¢ =PBs(aj,Lj)(¢p) in R"\Z.

Here %y (a;, x;) : CO(R" \ £) — C?° (R" \ ¥) is given by
B (aj, Aj) (@) = —(Lo(@ M) (Mo Gli(x.L.a;0)) + (Lo (@, 1) (%o (@), 1)) ($))

(5.47)
and %, (aj, ;) : CO(R" \ ) — C*(R" \ T) is given by

Ho(aj, hj)(@) = (—A)7[Zo(a;, 1j)(P)], (5.48)

where

o@o(aja A’j)(d’) = |fﬂ(ﬁ(x,L,aj,lj) + ¢) - fa(ﬁ(x,L,aj,Xj)) - f(;(’/_‘(x,L,aj,kj))‘PL
(5.49)
First, by definition, one has

%5 (aj, Aj)(P)lc,.®ns) S 146 La;a))lle,, . @)
+| %5 (aj s l])(‘P)HC**J(R”\Zy

Second, fixing a large C > 0, we define the set

¢ €CieR"\X) 2 9llc, ,mn\3) S € ~reL+8)
Be = and [, (pff;(U(xi,L;,)L’].,aj))Z],l(a./’ A)dx =0
forall (i, j,¢) € Zoo

We observe that the first term of the right-hand side of the equation above is estimated
in Lemma 5.18. Hence, we are left to provide similar estimates for the remaining term.
Claim 1: The following estimate holds

_ (1=60)ys L 1420

”%o_ (aj, )\-])(d))”C**T(Rn\E) S T n—20 ||¢||C* r(R”\E) + ||¢|| n— 20Rﬂ\2)
= oDli¢lic, , ®n\x)-

Now, for any ¢ € B¢ We must estimate the L°°-norm of the error term in (5.48). We
start by estimating the term (5.49). Indeed, it is not hard to check

n—6a

—n 20 : ~ 1
¢ if lie,Laapl = 79,

125 @), A @) 5 1 Mkardp® T Bk =
¢, if Jixe La;0p] < 39

Again, the proof will be divided into two steps. First, we estimate the integrand in
(5.49).
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Step 1: The estimate below holds

| 2o (aj, 1) ()]
n—6o

ZzNzl ('WH%M(R”\E) + ”(p”é*iﬁ(ﬂgn\2)> | xi|§l_26, if 0 < d()C, E) < 1,

~

n+20

60)yo L .
|x|—(n+2rr) ( n—20 ”¢”C* ®\5) + ||¢||(’11*2(7(th\2)> if d(x, X) > 1.

As a matter of fact, by our construction, it holds:

(i) If dist(x, X) < 1, then

|Ds(aj, xj)(P)]

N

n+20 2% n+%g (n+20)¢)
S IBIE, , syl Ly % = Xl 1818, g X = Xl 72
i=1

S

-

2 ) -
(1613, , oy 15 = 1972 1 = 14

i=1

n+20 42002
+ - —2 —&142
||¢||(’E'*JU<Rn\E)|x - Xi|Cl Ul_x — -xi| n—20 & Ui|

N n+20

<Y (||¢||é*,,(w\z) - ||¢||gj"(R,,\z)) Jx — x; |92
i=1

(i) If dist(x, £) > 1, then

|25 (aj, xj) ()]
n—6o ni»%a

2 = n—2 —4ys _n o
N ”¢”C*J(R”\E)u(x,lf,aj,lj)|x| + ”¢”C*_T(R”\Z)|x| 2

—(n+20) [0Sl o =
g |)C| e n-2 ||¢||C*J(RVL\E) + ”(p”C*T(Rn\E) .

% (n—20)

By combining the above two estimates, the proof of the first step is concluded.
Second, we can use the estimate above the handle the term (5.48).
Step 2: The estimate below holds

%o (aj, Xj) ()]

n+20
Z;V=] <||¢”(22*,(R”\E) + ”(/J)”(Y,L*Z:(R”\E)) |x _xi|€l_r, if 0 < d(x, E) < 1,

” |x|—<"—2“>< S )12 g1 ) itdx, $) > 1
Cyr (RN\X) Cir(RM\X) | ’ -

Indeed we need to plug Step 1 into (5.48) and proceed as in Claim 2 of Lemma 5.18.
The proof follows by recalling the definition of weighted norms in (5.27) and (5.28).
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Claim 2: The map %, (a;, A;) : Bc — Bc is a contraction.
Now we consider two functions ¢1, ¢» € B¢. From the estimates in Step 1 combined
with the ones in Lemma 5.18, it is easy to see for L > 1 large, one has

| Bs(aj, xj) (1) — Bo(aj, Xj)(¢2)

o @) < 0Dlg1 = B2llc. s
Therefore, one can be combined, and the proof of the claim is concluded.

Based on the last step, we can use the standard Banach contracting argument to
obtain the desired fixed point; this completes the proof of the proposition. O

6 Estimates for the Projections on the Approximate Null Space

In this section, we provide some estimates related to the coefficient functions seen as
functions on the perturbation parameters, namely

(e} }ijoeTn CCOUFRUTDNY), (6.1)
which were obtained in Sect. 5, where we recall Zoo :={1..., N} x N x {0, ..., n}
is the total index set. More precisely, we notice that from Proposition 5.21, whenever
(aj, ;) € Adm, (%) is a set of admissible parameters in Definition 5.5, one can find a

solution it (y Laj\)) € Apx,, (X) (orsimply u(x, 1) € Apx, (X)) to perturbed equation
(Q/ZU «.») as in Definition 5.12. Here we recall

(x, L) € Comp, (%) — (q,ao, R) € Bal;(X) — (aj,X;) € Adm, (%)
> Ux,L) € Apx, (2);

or, equivalently,
ﬁ(x,L) = (Yso1 0 Tper o Yeont)(x, L)

is the explicit construction of approximate solutions. Thus, applying the Lyapunov—
Schmidt reduction, one can see that finding solutions to our original problem (Q’za 5)
is equivalent to solving the following infinite-dimensional system:

,3;1’6@1,,}\,):0 for (i, j,€) € Ino. (S20.3)

Here the projection functions {,B;M}(,-‘j,g)ezw C COO(ECT’O(R("H)N)) are given by
ﬁj.’e(aj, )_j) = / ,/\/‘(7(x7 L, aj, Xj)?lj’e(aj, lj)dx for (i, j, 0) €1y, (6.2)
Rn
where we recall that

No(x,L,aj,Xj) =itx.La;r;) — (—A) 7 (fo 0li(x La;r))
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and the family of cokernels {TM(aj, A} j.0er., € CO(R"\ ) given by Defini-
tion 5.13. The idea is to find a set of configuration parameters such that its associated
sequence of perturbation parameters satisfies Syst. (Sa., ). Then, the balancing con-
ditions (#41) and (%,) will allow us to perturb this special configuration to find a
true solution to our problem. In some sense, this is a discrete version of the pertur-
bation technique we applied to approximate Delaunay solutions by half-bubble tower
solutions.

6.1 Projection on the Normalized Approximate Kernels

Initially, we prove the decay of the functions defined in (6.2). For this, we shall consider
two cases. Namely, when the perturbation sequence of parameters is trivial, that is,
(aj, ;) = (0,1). Notice thatindeed (0, 1) € Adm, (X) is an admissible perturbation
sequence.

With this definition, we have the following estimate:

Lemma6.1 Leto € (1,400), n > 20, and N > 2. Assume that (aj,L;) = (0,1) €
Admg (X) is a set of trivial perturbations. Then, there exists two constants Ay >
0, A3 < 0 independent of L > 1 given by (A.2) and (A.3) such that the following
estimates hold

i) Ifj=0and
(a) £ =0, then one has
Bh.0(0.1)
= —Cnoqi | A2 Y |y —xi| T2 (RIRT) g — gi | eV R (1 4+ 0(1))
i’ i
+ O(e*)/al(l+$));

(b) £ e{l,...,n}, then one has
j j (i — xi) i pi'\Yo ~¥oL
B¢ (0, 1) =cy o A |:A3 > W(R'Rl )77 gjrqie”
i'#i

+O(6_V(TL(1+S))] .

@{i) Ifj > 1and

(a) £ =0, then one has
0.1 =0 (e—yo(1+s>e—vt;i) :
(b) £ €{l,...,n}, then one has

B ,(0,1) =0 (e_y"L(HE)e*(HU)I-;)
‘]y 9 b
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where v = min {;“1 + Yo, 3 } independent of L > 1 large and & > 0.

Proof Recall the definition of the cokernel 7] (0, 1), we have

/3;-,5(0, 1= /R [(=A) i, L01) — (fo 0 ﬁ(x,L,o,l))]Z},g(O, 1)dx.

Then The proof is the same as in [8, Lemma 4.1], and we omit the details. O

It is not hard to check that only the perturbations of (a, A ;) will affect the numbers

z(“ j»Aj), that is, we can get the same estimates for ,B’/ (0, 1) for an admissible
sequence of parameters. Consequently, one can see that for any fixed i, € {1, ..., N},
the corresponding x;, € ¥ and L;, € Ry are also fixed. Hence, if we cons1der the
approximate solution defined as

Uiy L.0.1) "= U(xi, . Li, 0.1)s (6.3)

then the same estimates for ,3;.* 2(0, 1) in the above lemma are still in force.

Next, we estimate the coefficients in (6.1) for a general admissible perturbation
sequence. So fixing i, € {l,...,n}, we would like to study the estimates for the
variations of ,3;* ((a;, X;). Before, let us introduce some terminology. For any fixed

iv €{l,...,N}and j, € N, we let e;?; € R” and let r;: € R be such that
b < (A2 i | < o~
le; 1 S () and rilSe e
In this fashion, we define the variation of the perturbation sequence as

if j # Js

o
(a](t),lj(t)) - {telji +Rl*(1 —i—tr;:) lf] :]*

Finally, we set
N

0000 = 20 (T a0 + 06 = 1€6)6%@; (0,110 (), (6.4)

i=1

where R R
U(Z}Tz),xj(z))(x) - Z U(tc,v*,L,v*,aj.* (0,207 (z))(x)
jeN
with N )
U&-* Liy ajf (0,4 ‘™ = UR"*<1+",-’§‘ o — e,

where 0 < t « 1 is sufficiently small.
With this definition in hands, we have the following estimates:
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Lemma6.2 Leto € (1, +00),n > 20,and N > 2. Assume that (a, X ;) € Adm, (%)
is an admissible configuration as in Definition 5.5 and ¥ : R — R be defined by (A .4).

Then, there exists constants A1 < 0, Ay > 0, A3 < 0 independent of L > 1 given
by (A.1), (A.2), and (A.3) such that the following estimates hold

(W) Ifi =ix jx # j, and

(a) £ =0, then one has

9 li=0 /Rn o ;01,000 Z5,0(@5, X)dx

—(1=20) 10 i’ \V. i ln}‘li/)‘é
= —Cuod | A2 Y Ixir — x| (Roro)" + ‘1’(|1Mo/11|)Hnl\%i/%|
i i

+ O(e—VaL(1+S));
(b) £ €{l,...,n}, then one has

9t lt=0 /]R” E/I{T(ﬁraj(,),kj(t)))z;’g(ajaxj)dx

;= Xj y mm{k /)J )J /A o
= CnoMyds |:A3 Z (a7 + A tey

()»0
Xjr — X; n—20-+42 i i 2
Ty — il | max(al,, A7 )|

+ O(Age_VUL(l‘f‘s));

(11) Ifi:l'*,j*ZjEI
(a) £ =0, then one has

Orli=o Aén «/1{7(’/_lfaj(;)’)‘j(,)))zi-,g(aj»)vj)dx

o InAb /Al
= —Cnod | W(Ina /Al ) —20 | O LU,
n,0 0t |: (I o/ l|)|ln)¥l1/)‘6| ( )

(b) £ e{l,...,n}, then one has

9li=o /Rn Ao @a;00.0,0)) Zj.e@j, A )dx

mm{ko/)d , )J /A }Vf’
i i 2
| max(3,. 2 )

= Cn.o A0y [Al g:| + O e 1o MU ey,

for some v > 0 independent of 0 < t < 1 small, L > 1 large, and & > 0.
Proof The proof is the same as in [8, Lemma 4.3]; thus, we omit the details. O

Next, we study the case of a general sequence of perturbation. In this proof, it will
be fundamental to use the fact that our sequence of parameters is admissible.
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Lemma6.3 Leto € (1,+00), n > 20, and N > 2 and (a;, ;) € Adm,(X) be
an admissible configuration as in Definition 5.5. There exists constants Ay, Ay >
0, A3 < 0 independent of L > 1 given by (A.1), (A.2), and (A.3) such that the

Jfollowing estimates hold
(1) If j =0and

(a) £ =0, then one has

Boo@j hj) = —cuoqi | A2 Y Iy — xil " " (RGRG) 7 g
i/
Ry
Ry
(b) £ €{l,...,n}, then one has

; ; (xir — xi)e i i’ \Ve
Bo.c(@j,Aj) = cnohg | As Z W(Rél% )7 gjr
i

. yg . .
R! ah — a* _
+Ao (—,]) o 216111 gie "
R/ ()

+ OMhe 77 Uy for ¢ € {1,..., n}.

(i) Ifj > 1 and

(a) £ =0, then one has
Bio@jAj) =0 (e—yaL(1+§>efw_’,i n e—y(,L(l-i-g)efnj._])
j.0léj .

(b) € €{l,...,n}, then one has

Blo(@j hy) = O (e 00 ek o) for e (1,

where v = min {{1 + V5, VT"} independent of L > 1 large and & > 0.

Yo
- <—> q,} e (1 4 o(1)) + O(e 71 L)),

,nj,

Proof For the same reason as in Lemma 6.1, The proofis the same as in [8, Lemma4.4],

and we omit the details.

6.2 Derivative of the Projection on the Normalized Approximate Kernels

O

Here we estimate the variations of the projection functions in (6.2) with respect to the
perturbation parameters. As before, for any fixed i, € {l,..., N} one has x;, € ¥
and L;, € Ry, we denote by “ka, Lo1) € C%°F(R" \ ¥) an approximate solution to
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(Q20.x). Using Proposition 5.21, we know that by performing the Lyapunov—Schmidt
reduction method, there exists an error function

¢Ekaj’)vj) = ¢(x,'*,L,'*a.,',X.,~) € C*(Rn \ Z) (65)

In this direction, it also makes sense to define
%*(aj, )vj)(d’) = L/Kr(“?aj,)tj)‘kfb) = (u?a_;,l_/) +¢)_(_A)_U[fa O(”zﬁa‘j’)‘j) +((g)6])

Furthermore, let us introduce the linearized operator applied to this approximate solu-
tion £ (a;, ;) : C*(R" \ £) — C*t*(R" \ ¥) given by

L @i Aj) (@) =¢ — (=D (fy 0iify, 2,))9-
From now on, it will be convenient to denote the new coordinate system as
go=r; and for & ,=ad, for £e{l,...,n} 6.7)

We study the variations with respect to (6.7).

We now need to study the derivative of c'j* ((aj, Aj) with respect to the variations
of the parameters in (6.7). Initially, we consider the most straightforward model case
when there is only one point singularity at X = {0} and u(x.1) = U(o,L;) € C%7 (R™ \
{0}) is the associated approximate solution, i.e., the Delaunay solution from (5.8). We
recall that this solution satisfies (Q/2 o 3 with ¢, Ly = 0 and vanishing right-hand
side. We define

Bl (@A) = fR N @ A)Z] y(aj, dj)dx. (6.8)

In this setting, one can still perform the reduction in Proposition 5.21 to find a perturbed
solution in the form u = i,z ;) + ¢ of the following equation:

Ni@j @) =YY @ A)Z; @ hj) in R"\'S,
jeN ¢=0 (6.9)

/ $Z(@;, hp)dx =0 for (£, j)€{0,....n} x N.
Rn

In conclusion, for any fixed i, € {1, ..., N}. Let us denote by ﬁ:‘aj ) ¢Z‘aj ) the
pair satisfying the infinite-dimensional reduced equation (6.9). Notice that the reason
to start with the trivial configuration u ;) € C27 (R™ \ {0}) is that we will have the
identification 85}:,@’3}‘3 = lim;j_ 400 agj_gﬂ}fz, where we set &; ¢ 1= E;TZ.

Let us begin with the lemma below:

Lemma 6.4 Leto € (1, +00),n > 20,and N > 2. Assume that (a, X ;) € Adm, (%)
is an admissible configuration as in Definition 5.5 with lZ(x,L’aj’)\j) € Apx, (X) their
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associated approximate solution as in Definition 5.12. Then, for L > 1 is sufficiently
large, one has
|3§;,e¢>(x,L,a,-,x,-)(x)|
e Vo LUHE) |y _ | =¥o oI if £ =0,

~ ) riv=1 = o L(1+E) e ol in Bi(x;),
()" emre Ix —xi| e iifeefl..., n},

where v = min {{1 + Vs, %“} independent of L >> 1 large and & > 0.
Proof The proof is the same as in [8, Lemma 5.1]; thus, we omit the details. O

We remark that an estimate similar to this will hold for the pair ﬁz‘aj ) qbZ‘aj )
The last lemma shows the suitable weighted Holder spaces for this setting.

Definition 6.5 Let 0 € (1,4+00), n > 20, and N > 2. For any o € (0, 1), let us
introduce two new weighted norms

it
Iplc, @z = lx —xi17 " 75l 2o va(s, o)
+ ) llx = X7 Bll2orapy )
i' i

-2
+ 111" @l c2ora @m\u,s By (x,))

and
_ vy oIt =]
léllc,., @) = llx — xi|*7e P @llcro+a (B, (x))
+ Y lllx = xi 77 Bllcaerap, )
i
n+2o

+ [l1x] G llc2o+a ®m\U, B, (x;1))

where we recall that ' = —In|x —x;| and 0 < v < 1 is a small positive constant to be

determined later. We also denote by C,. ,(R" \ ¥) and Cy , (R" \ X) the corresponding
weighted Holder spaces.

In the light of Lemma 6.2, one can prove the estimate below

Lemma 6.6 Leto € (1, +00),n > 20,and N > 2. Assume that (a, X ;) € Adm, (%)
is an admissible configuration as in Definition 5.5 and ¥V : R — R be defined as (A .4).

Then, there exists constants A1 < 0, Ay > 0, A3 < 0 independent of L > 1 given
by (A.1), (A.2), and (A.3) and & > O such that the following estimates hold:

(a) If £ = 0, then one has

0810 ] 5 —ony = ~2n0 V(L) + O(e 1o LU+,

9;Bj-1.0(a;, Xj)|(aj’xj):(0,1) = oW/ (L) + O(e V7 LU+,
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3 Bj+1.0@j, xj)|(ajixf)=(0,l) = Cpo W/ (L) + O(e Vo EIHE)
0r; B, 0@ M| 5 _oqy = O™ el 70 for 1), — jl = 2.
(b) If ¢ € {1,...,n}, then one has

. min{A /A, Aj /A i}
9, B (a-,l-)’ =Cpohij L
aj Be(@js X @ap=0n "7 ]j%:_ max {17, A7)

_I_O(e—VaL(l-i-S)) if j# s

and

omin{d;, /Aj, Aj/Aj "

4 O(e v LUHE)y

3. B (@i A =c
4B (@) 2y) @ap=0.n 7 max(a2 22
In addition, it follows
0, , B o(@j, 1)) =0 if £#£0.

(aj,x;)=(0,1)
Proof The proof is the same as in [8, Lemma 5.2]; thus, we omit the details. O

The strategy to proof the desired estimates for the case of a generally admissible
perturbation sequence (a;, A ;) € Adm, (X) is first to study the trivial case (a;, A ;) =
(0, 1) and then perform a by-now standard perturbation of parameters method.

For simplicity, we only state the latter case:

Lemma 6.7 Leto € (1, +00),n > 20,and N > 2. Assume that (a, X ;) € Adm, (%)
is an admissible configuration as in Definition 5.5 with zZ(x,L,aj,;‘j) € Apx, (%) their
associated approximate solution as in Definition 5.12. Then, for any i, € {1,..., N}
fixed and j € N, we have the following estimate:

. _ *
Has},z (d)(x’l"“f’)‘f) ¢(“j”‘.f)) Con(RM\)
< {ey"L(”g)e_wj' for £=0

(A;)_le_y“]“(l*'s)e_w} for ¢£e{l,...,n}

In particular, it follows

0, (B0 2) = Byrtajinp)|
eV LU0 =V TV o g

—U|t}—t},|

(k;)_le_yﬁ(l‘%)e_wje for ¢e{l,...,n},
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where 0 < T < v small enough with v = min {;1 + Vs, VT"} independent of L > 1

large and & > 0.

Proof The proof is the same as in [8, Lemmas 5.5 and 5.6]; thus, we omit the details.

7 Gluing Technique

O

In this section, we prove our main results. We keep the notation and assumptions in
the previous sections. The proof here is similar in spirit to the one in [8, Theorem 1].

Nevertheless, we include it here for the sake of completeness.

7.1 Infinite-Dimensional Toda-System

We apply a fixed-point strategy in a weighted space of sequences. Before we start, we

define some notation.

Definition 7.1 For any 7 > 0, let us introduce the following weighted norm:

1@, A)loor = supe® D@, 1)) oo
jeN

We also consider the associated Banach space given by

PRIV = {(aj,x,-) € C°R™INY ¢ (a4 oor < +oo} .

Forany (a;,7;) € £°(R™2N) we define the interaction operator
‘Zﬁj,fj) :g?O(R(nH)N) N @o(R(nH)N)
givenby Ja, 7,y = (Ja;), J#;) Here
Tapaj) = zﬁj)&tj and T, (Fj) = 9(;)].?;-,

where 9@,) = (ﬂ(l

él_),

- Tay) and T, = (T

;)_i’ ..

N .
., ﬂ(;)j) with

1 14e2Li _p2Li 0 el 0
0 —1 14 2Li _p 2L 0 .0
0 —1 142 2Li 9

[
Zdj) -

(7.1)
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and
12 =10 -+-.-- 0
; 0 -12-10 ".0
Tiy = . (7.2)
0 0-12-10
being infinite-dimensional matrix for all i € {1, ..., N}.

It is straightforward to see that these infinite-dimensional matrices are not invertible
since they have a trivial kernel. However, they are indeed invertible in some suitably
weighted norms defined above. In this direction, we have the following surjectiveness
result for the interaction operator.

Lemma7.2 Let o € (1,+00), n > 20, and N > 2. For any t© > 0, the interac-
tion operator Z,—,j,;j) : E‘TX’(R(”“)N) — Eé’o(R("H)N) has an inverse, denoted by

ﬂ(a_jl.;/_) AP REHEDNY 5 p2(ROHDNY Moreover; one has
g—l . . < 2t 73
sup [ (éj,Fj)(aJ’rJ)” ~ € . (7.3)

[(@j,rj)loo,r=1

Proof The proofis given by directly constructing the inverse operator. First, we observe
that 9(;_)1, : Ei’o(RN) — E;’O(RN) can be found in [44, Lemma 7.3].

We are left to provide the inverse for Z,;/.) : E?O(]R"N ) — E?O(]R"N ). Indeed, for
any b € £° (R"N), we have to solve 9@.) (aj) = b;. This is accomplished by defining

cz‘;)lj SRR - (RN as

00 k—j—1
e _ —2Ll‘S _ —1
aj = Z Z ¢ bj =T,
k=j+1 \ s=0

Whence, by performing the same routine computations, one can quickly check that
a; e Z?(R”N ) satisfies the required conditions and that the operator Z;)i is a com-
plete inverse of Jz); .

In addition, one has

00 k—j—1
~ 7 —2L; —(2k+1 —2j+3)t 1
|aj|oo§|b]|oo,r Z Z e s e ( +)T§€ 2j+ )T|bj|oo,‘(,
k=j+1 \_ s=0
which implies the estimate (7.3). The lemma is proved. O

Lemma7.3 Let o € (1,4+00), n > 20, and N > 2. Assume that (R, ay,q) €
Bal, (X) is a balanced configuration. Then, for L >> 1 sufficiently large, there exists
0 < v < min{§, v} and an admissible perturbation sequence (a;, A ;) € Adm,(X) C
EXRTINY such that B y(@j, Aj) = 0 for (i, j. 0) € L, that is, (aj, X)) €
Adm,, (X) solves the inﬁnité-dimensional system (S %)
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Proof Indeed, forany i € {1,..., N}, let us define the operator @Gl PREHDNY
X (ROFDNY givenby 47 = (43, ..., 94!, where @] : (°(RY) — £2°(RN) for each
£ €{0,...,n}. More precisely, we have

1 . : .
G(aj, xj) = —— B 0@, k) = Bj (0. Dle; — Tz, ()

F(L;)
and
¢ el i t ~
g() (aj,lj) = T[ﬂj,o(aj,)»j) - ﬂj,o((), Dle; — 2&_/)(‘”) for £e{l,...,n},
J

where e; € £2°(R”*+DN) s the i-th vector in its standard Schauder basis, which we
denote by fe;}ien C €°(RHDN),
One can easily see that ,Bf’j(aj, Aj)=0forj>1if

. . Yoli .
(&;)t — _(y(%j))fl (_eTﬂ}vo(o’ l)eE + Y (a;, Xj)) (7.4)
j
and
(r;'.)t — _(9(;/)),1 (_mﬂjyo(o, l)eE + gé(aj, Xj)) . (7.5)

Next, we show that the terms on the right-hand sides of (7.4) and (7.5) are contractions
in an appropriate sense. First, by Lemma 6.1, one has

e Ve L1040 ™V ipp —

ﬁthﬁgi for j > 1.

)Lije—yaLl(l-i-S)e*V’_;, ife>1,

Also, let us denote by the projection on the j-th component it follows

—~ ~ e)’(rLi R R -
(“Goj +%e j)aj,\j) =11, (A—i[ﬂ},o(aj, xj) = B 000, De; — 9(5,-)((!/)) ,
J
(7.6)

where

—~ 1 erTLl- , e J—— . ,

G (@, 1)) =/O [Tatﬁ},z(t(a},r;)t) —,m/i| (@ riyt) e

J

and

Gj(aj ) = — T (@)

aj)
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with
gya

o (@) =3

j'eN j

S B ) - [a ]

where ﬂ;* (aj, xj) € Risdefinedas (6.8) and a'. € R™ corresponds to the translation
perturbation of the j-th bubble in the Delaunay solution from Lemma 6.6. Furthermore,
by definition, one has ' '

Tap(@)) = Tay (@)H,

Now we have to estimate the terms on the left-hand side of (7.6). Indeed, we begin
by estimating the first term. As a consequence of Lemma 6.6 for £ € {1, ..., n}, one
finds

~ eVol ) . .
e (@A) S Y T|a&;,(ﬂ;,e — B} oG Al [al,

+ 0O (e_VaLi%-e* min{v,r}z.’}.)

j’eN 7
< Vo Z Ul ],\| i |+@< e=plic, min{u,r}t})
j'eN

< (e—yngefmin{v,r}t.’}) .

In addition, we apply Lemma 6.6 to estimate the second term; this gives us
~ _ . —oL: {1 ~i ~i |t, t A
@ Ap| S e e (1@ gl 1)+ D0 e g
J'#FjEL
(7.7)

Therefore, by combining these two estimates, it follows that for 0 < 7 < v « 1, one
has

i@ xp) S ehe T b (@) | oo ey FO(e 77 HE) for L e (... n)

Z?_C(R('H'])N) ~
1

and

Hgé (@j, X)) H[ (RO+DN) Setherrolit ||(”;)t||grl_ ®Vy + O(e 17 Li%),

where 7; = % Next, up to some error, Eq. (7.4) and (7.5) can be reformulated as
@) = (Z ) [e e @ Ny, + O | = S (@)
and
()t = (T )7 [T E ) ey + O | = G (),
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where the right-hand sides of the above equations are estimated in £7” R+DNY norm,
Atlast, for0 < 7 < & < 1, let us consider the set

#y = {@.r)) € RN @l S e

Notice that {4@.,,/.) C B — @%_O(R(”H)N) given by %(,;j,,j) = (%(;,j), “(r),;) maps
%’I’i into itself, and it is a contraction. Therefore, one can invoke Banach’s contraction
principle to find a fixed point in the set Z7, which solves (Sa,x). The proof is then
finished. O

Next, we have an invertibility lemma based on the balancing conditions from Def-
inition 5.5.

Lemma7.4 Let o € (1,400), n > 20, and N > 2. Assume that (qb,ag, Rb) S
Bal, (2) is a balanced configuration. Let us consider the operator F : R*>N — RN
is given by
Fg.R) =AY lxy — xi| " "2 (RIRT) gy — g
i'#i
Then, the linearized operator around (q”, R"), denoted by df(qb’ RY) - R2N — RN,
is invertible.

Proof Notice that the linearized operator dF(q, R)| @".RY ¢ RZV — RN has the
following expression:

dFq.r) = (q;1, Ri) =: (dFy, dFR),
where ¢,/ € Rﬁ and R,/ € Rﬁ are defined, respectively, as
gy = (qir) and R; = (Rii)
with
_ L it =i
qii’ = Azl.xi _ xifl_(n—zo')(Ri,ij”b)]/g, lf i ;& l-/

and

o [ RIS y Aaly — i TR (RVPRT Py e i i =i
e (R T Aglxi — x| T2 (REPRT Dy g, if Qi

Next, frorq the balancing condition (4)), it follows F (g”, R”) = 0. Also, one can
see that dF, is symmetric and has only a one-dimensional kernel. More precisely, we

have Ker(d]:'q) = span{qb}.
Finally, the balancing condition (%) also implies d]:"q (R) = y5q. From this, it is
easy to conclude that the operator dF; 4" R") is surjective. O
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7.2 Proof of the Main Result

Now we can provide proof for our main result in this paper.

Proof of Theorem 2 By Lemma 7.3, we are reduced to find (R, o, ¢) € R®+>¥ such
that ﬁ("),z(aj, A;) =0forall j € N, where (aj,X;) = Tper (R, a0, q).

The rest of the proof will be divided into two main parts: the zero-mode and
the linear-mode case. First, if j = 0, using Lemma 6.3 (i), one has that equation
,8(")’0(aj, A ;) = 0is reduced to

i\ Yo
— Cnogi | A2 Y xi = xi| T2 (RERY) 7 gir — (—‘) gi | €77 (1+0(1))
il
+ O(e_)/aL(l-i-%')) =0

Furthermore, recall that since R6 = Ri(l + ré), one can use that ré € R, satisfies
Irol < e~27 to reformulate the equation above as

Z1(R, ap, q) = o(1). (7.8)

Here .7 : RN — ROV 5 given by

F1(R.d0.q) = A2 Y |xir —xi| "0 2O(RIR) 7 gy — ;. (7.9)
i1
Second, if £ € {1, ..., n}, using Lemma 6.3 (ii), it is not hard to check that the system

ﬂ(i)’z(aj, A ;) = 0 are reduced to

. )/D. . .
Xi)e R} ab —a' _
Cn.o Ao A3ZW(RORO)VU% +Ao<R,> OA. Lgi | gie 7"

4 O(}»Be*)'aL(lJré)) -0

In addition, since

i qinN25i =i
aj—(kj) a; and a;

= ay+aj,
one can use that &j. € R"V also has the decay |&§.| < €727, the above equation can be
rewritten as

F2(R, ap, q) = o(1), (7.10)

where .7, : R — R®+2N 5 given by
Xi)e

W(R RY)Y g+ Aodii. (7.11)

F2(R, ao, q) == A3 Z P
]
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To conclude we need to choose suitable (R, @, g) € R"+?N such that equations
(7.8) and (7.10) are solvable. Notice that the solvability of (7.8) and (7.10) depends
on the following invertibility property of the linearized operator of . : RN
RO+2DN given by .F = (F,.%>) around (R, ag, q). Moreover, from Lemma 7.4,
this accomplished since (R, ag, q) € Bal,(X), that is, it satisfies (%) and (%>).
More precisely, the balancing condition (), one can easily perturb (R”, ¢”) to find
(R, q) solving (7.8). Next, using the second balancing condition (7.10), one can find
ao € R™ around ii(b) € R"N which solves (7.10).

In conclusion, we use the maximum principle in Lemma 4.9 to show that # > 0 to
conclude the proof of the main theorem. O

Acknowledgements This paper was finished when the first-named author held a Post-doctoral position at
the University of British Columbia, whose hospitality he would like to acknowledge.

Appendix A: Estimates on the Bubble-Towers Interactions

In this appendix, we quote some important integrals in our proof. The following
expressions may be found in [8, Appendix 7] for ¢ € R,. Let A1, 2243 > 0 and
x1, x2 € R" with x # 0, we define

Uy :=Upy, Ux:=Uyy,, and Usz:=U,,,,
where w,, ; is given by (4.4). We also recall

n—20 , n+ 20
Vo i= > and vy, = 3

to be the Fowler rescaling exponent and its Lebesgue conjugate, respectively.
In what follows, we use the constants below:

2 ) Yo !
A = (n+20)(n —20) <|x|2yg (1 + |x|2> + 1) dx >0, (A1
R”

n
2 o1
Ay = P20 [ k2= (14 1) " dx s 0, (A2)
2 S
and )
_0 o1
AF_u/ e (14 1) " dx <. (A3)
n n

Lemma A.1 For any Ay, Ay > 0. It holds

1
/ fé(U[)Uza)LlUldx = —\y <
R” A

where
W) =e (1 4+0(1) as € — +oo
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with
W) = fR £ (vspn (1) vspn ¢ + O/ (1)d1. (A4)
Proof See [8, Lemma 7.1]. O

LemmaA.2 If i3 = O(Ay), then the following estimates hold

(AA3z)7

/ Fo(U)U39;,Updx = Ag|xa | ™"
R M

(1 + O(xl)z)

and
/ LU U30,, Urdx = Asxelx|*® "2 (h23)7" (1+0 (A%)) for ¢€{0,...,n}.
R”

Proof See [8, Lemma 7.2]. O

LemmaA3 Let Aj,A2 > 0 and a € R If l[a] < max{A{,A3} <« 1 and

min {%, i—f} & 1, then the following estimates holds

/ (8“U(ZU):1)U({O)LZd‘x = _AOC)VI’AZCM,)VZ + C)“lv)LZO (C}le,kz + C%],Azc)%l,)Q) ’
R~
(A5)

where

n{() () e e ”
c =min{{=) ,(== an g = —————.
A2 by Al M2 = X 23,23}

Proof See [8, Lemma 7.3]. O

Appendix B: Nondegeneracy of the Bubble Solution
In this section, we add the proof of the nondegeneracy of the spherical solution.

Proof of Lemma 4.6 Let us start with ¢ € H? (R"). Using the statement in [42, Lemma
5.1], it suffices to know that ¢ € L (R"). We will divide the proof of this fact into
three cases, which we describe as follows:
Case 1: n > 60.

Indeed, notice that, from (4.14) since f, (uspn) € L>(R"), one can find a large
constant C > 1 depending only on n, ¢ such that

_ & ()] 1
<[ Clx—yP™ dy fi R". (B.1
(x| < /Rn lx — vl <1+|y|4" + RN y for xe (B.1)
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Also, by partitioning the Euclidean space as R” = B;(0) U By (x) U (B4 (0) U B;(x))¢
with d := |x|/2 > 1, and integrating on each subpart, we obtain

R 1 "
dy < forall x € R". (B.2)
R 1+|y|n—2c7 ~ |x|n—4a

Furthermore, by substituting the last inequality into (B.1), one has

lp(x)| =C / |x—y|2"*”|¢( )dy + ! f eR". (B.3)

X — | (x _— or x . .
T U Ty P

Next, since n > 60, one has that [pg, px) # &, where py = % and py = 5,

which allows us to use the Hardy-Littlewood—Sobolev inequality to get

| (x)] 2o
pllLr @y S H— * |x|277"
14+ |X|46 LP1(R")
< H [ (X))
1+ |x|4 L41 (RM)
1
S @l Lro e ‘— , (B.4)
(R™) 1+ |x|4¢7 Lo &)

for any p € [po, p«) and pr = _n—rg);)p()'

In what follows, we are based on the estimate (B.4) to run the bootstrap argument
below and obtain the desired L°°-estimate. First, notice that from (B.4), we have
¢ € LPI(R"), and so ¢ € LPI(R") for all p € [po, p1]. Second, we check whether
P1 = px ornot. In the affirmative case, we apply (B.4) with p = p,—efor0 < e < 1
small enough to obtain that ¢ € LP'(R") for all p € [pg, +00). In the negative case,
we use (B.4) with p = py, which gives us that ¢ € LP2(R") for all p € [po, p2],
where pr = n_"fg'pl . Third, we repeat the same process for this new exponent.

More precisely, it is not hard to check that the bootstrap sequence {p¢lren C
[po, +00) satisfies

n — 6o

Pe+1 = (l + )pg forall ¢ e N.

Hence, limy_, 4o p¢ = 400, which shows that the bootstrap technique terminates in
a finite step.

Now, let us fix some p >> 1 large enough. using the same strategy as in (B.2), we
find

1

_u loOl lx — y|Go=mpt 7
Ix — y[* " ———dy < —————dy| ¢l
/n 1+ |y4 w1+ |yl*ero &

1
~ n(p'—1) )
L 7

<1 forall x eR", (B.S5)
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where p’ = ”le is the conjugate Lebesgue exponent of p. Finally, from the last

estimate combined with (B.3), we deduce that ¢ € L°(R"); this finishes the first
case.
Case2:n = 60.

Here we observe that since for n = 60, it holds that pg = p, = 3, one has
[3, 3) = @; thus (B.4) does not make sense for this case. However, we still have (B.3).
In addition, since by Sobolev embedding, we know ¢ € H? (R") — L3 (R™), which,
as before, yields

| (x)] 1 1
< 22 -
Il "~ ” 1+ |x|4" |x|4a LP1(RY) * I+ |x|20 LP1(R")
X
ey
1+ |x| L41(RM)

S 10l ‘— +1,

L5 (R™) 1+|x|4‘7 Lo &)

where go € (3, +00), 1 = 2% € (3,3), and p1 = F4- € 3, +00).

This means that ¢ € L?(R") for all p > 3. More precisely, by taking go > 1, one
can make p > 1 large enough. Finally, by the same argument in the last case, we have
¢ € L°°(R"), which concludes the argument for the second case.

Case 3: 20 <n < 60.

In this case, using the Hardy-Littlewood—Sobolev inequality, it follows that

| (x)] )
ol Lri ®ry S ”— s |x |70
1+ |x|4‘7 LP1(R")
< H | (x)]
1 + |x|4U L91 (R")
1
S @l Lroge ‘— ,
(R 1+|X|4J L90 (R")
2 2
where po = n—ga = 2:;’ q0 € (%’ 60’1n)’ 91 = qg?gp?o’ and pr = %

(po, +00). This means that ¢ € L?(R") for all p > pg. From (B.5) we conclude that
¢ € L°°(R"), which finishes the proof of this case.
The lemma is proved. O
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