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Abstract
This manuscript is devoted to constructing complete metrics with constant higher
fractional curvature on punctured spheres with finitely many isolated singulari-
ties. Analytically, this problem is reduced to constructing singular solutions for
a conformally invariant integro-differential equation that generalizes the critical
GJMS problem. Our proof follows the earlier construction in Ao et al. (Math Ann
369:109–151, 2017), based on a gluing method, which we briefly describe. Our main
contribution is to provide a unified approach for fractional and higher order cases.
This method relies on proving Fredholm properties for the linearized operator around
a suitably chosen approximate solution. The main challenge in our approach is that
the solutions to the related blow-up limit problem near isolated singularities need to
be fully classified; hence we are not allowed to use a simplified ODE method. To
overcome this issue, we approximate solutions near each isolated singularity by a
family of half-bubble tower solutions. Then, we reduce our problem to solving an
(infinite-dimensional) Toda-type system arising from the interaction between the bub-
ble towers at each isolated singularity. Finally, we prove that this system’s solvability
is equivalent to the existence of a balanced configuration.
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1 Introduction

The problem of constructing complete metrics on punctured spheres with the pre-
scribed fractional higher order curvature is longstanding in differential geometry. In
[32], Graham, Jenne,Mason, and Sparling constructed conformally covariant differen-
tial operators P2m(g)onagiven compactn-dimensionalRiemannianmanifold (Mn, g)
for anym ∈ N such that the leading order termof P2m(g) is (−�g)

m with n > 2m. One
can then construct the associated Q-curvature of order 2m by Q2m(g) = P2m(g)(1).
When m = 1, one recovers the conformal Laplacian

P2(g) = −�g + n − 2

4(n − 1)
Rg with Q2(g) = n − 2

4(n − 1)
Rg,

where �g is the Laplace–Beltrami operator of g and Rg is its scalar curvature. We
also refer to [3, Appendix A] for the explicit formulae for P2(g), P4(g), and P6(g).
Subsequently, Grahan and Zworski [33] and Chang and González [22] extended these
definitions in the case the backgroundmetric is the roundmetric on the sphere to obtain
(nonlocal) operators P2σ (g) of any order σ ∈ (0, n2 ) as well as its corresponding Q-
curvature. Once again, the leading order part of P2σ (g) is (−�g)

σ , understood as the
principal value of a singular integral operator.

Nevertheless, the expressions for P2σ (g) and Q2σ (g) for a general σ ∈ (0,+∞)
are far more complicated. Namely, the fractional curvature Q2σ (g) is defined from
the conformal fractional Laplacian P2σ (g) as Q2σ (g) = P2σ (g)(1). It is a nonlocal
version of the scalar curvature (corresponding to the local case σ = 1). The conformal
fractional higher order Laplacian P2σ (g) is a (nonlocal) pseudo-differential operator of
order 2σ ,which canbe constructed fromscattering theory on the conformal infinityMn

of a conformally compact Einstein manifold (Xn+1, g+) as a generalized Dirichlet-
to-Neumann operator for the eigenvalue problem

−�g+U − (n + 2σ)2

4
U = 0 in X ,

where U ∈ C∞(X) is the respective extension of u ∈ C∞(M). This construction is a
natural one from the point of view of the AdS/CFT correspondence in Physics, also
known as Maldacena’s duality [45]. We refer the reader to [1, 55] for more details.

In this manuscript, we are restricted to the n-dimensional sphere S
n ⊂ R

n+1, where
n > 2σ and σ ∈ (1,+∞) equipped with the standard round metric g0, which is given
by the pullback of the usual Euclidean metric δ under the stereographic projection
� : S

n \ {e1} → R
n \ {0} with e1 = (1, 0, . . . , 0) ∈ S

n denoting its north pole.
For any k ∈ R with 0 ≤ k ≤ n, we seek complete metrics on S

n \ �k of the form
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g = u4/(n−2σ)g0, where� ⊂ S
n is such that #� = N . In order to g to be complete on

S
n \�, one has to impose lim infd(p,�) u(p) = +∞. Also, we prescribe the resulting

metric to have constant Q2σ -curvature, which we normalize to be

Qn,σ = Q2σ (g0) = �

(
n + 2s

2

)
�

(
n − 2s

2

)−1

,

where �(z) = ∫∞
0 τ z−1e−τdτ is the standard Gamma function.

Let us now introduce some standard terminology. For any σ ∈ (1,+∞] with
n > 2σ and N ≥ 2, we, respectively, denote by

M2σ,�(g0) = {
g ∈ [g0] : g is complete on S

n \� and Q2σ (g) ≡ Qn,σ
}

and

M2σ,N (g0) = {
g ∈ [g0] : g is complete on S

n \� with #� = N and Q2σ (g) ≡ Qn,σ
}
(1)

the marked and unmarked moduli spaces of complete constant fractional higher order
Q-curvature metrics with isolated singularities. We also denote by sing(g) = � its
respective singular set.

In this fashion, our main theorem in this paper is the following:

Theorem 1 Let σ ∈ (1,+∞) with n > 2σ . For any configuration � ⊂ S
n such that

#� = N with N ≥ 2, there exists a metric g ∈ M2σ,N (g0) satisfying sing(g) = �

and is unmarked nondegenerate. For a generic set of� = {p1, . . . , pN }, this solution
is marked nondegenerate, and for such a metric (p1, . . . , pN , ε1, . . . , εN ) ∈ R

N (n+1)

constitute a full set of coordinates in M2σ,N (g0) near g0. In particular, one has
M2σ,N (g0) 	= ∅.

Let us derive an analytical formulation for our main result. The family of fractional
higher order curvatures transform nicely under a conformal change. Indeed, for any
ḡ ∈ [g], one has

Q2σ (ḡ) = 2

n − 2σ
u− n+2σ

n−2σ P2σ (g0)u,

where P2σ (g0) : C∞(M) → C∞(M) is the fractional higher order GJMS operator on
the sphere

P2σ (g0) := �

⎛
⎝
√

−�g0 + (n − 1)2

4
+ 2σ + 1

2

⎞
⎠�

⎛
⎝
√

−�g0 + (n − 1)2

4
− 2σ + 1

2

⎞
⎠

−1

,

where �g0 is the Laplace–Beltrami operator and [g] = {ḡ = u4/(n−2σ)g : u ∈
C∞+ (M)} is the conformal class of g, where u ∈ C∞+ (M) if and only if u ∈ C∞(M)
and u > 0. Furthermore, one has the transformation law

P2σ (g)φ = u− n+2σ
n−2σ P2σ (g0)(uφ) for all φ ∈ C∞(Sn \�),
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which means that GJMS operators are conformally covariant. Hence, finding confor-
mal complete metrics g = u4/(n−2σ)g0 with the prescribed curvature Q2σ (g) = Qn,σ

on S
n \ � is equivalent to finding smooth positive solutions u ∈ C∞(Sn \ �) to the

nonlocal higher order geometric PDE

{
P2σ (g0)u = cn,σu

n+2σ
n−2σ on S

n \�,
lim infd(p,�)→0 u(p) = +∞, (Q2σ,�,g0 )

where cn,σ > 0 is a normalizing constant and sing(u) := � denotes the singular set.
Next, it will be convenient to transfer the PDE (Q2σ,�,g0 ) to Euclidean space,

which we can do using the standard stereographic projection. In these coordinates,
our conformal metric takes the form g = u4/(n−2σ)g0 = (u · usph)4/(n−2σ)δ. Thus,
u ∈ C∞(Rn \ �) given by u = u · usph is a positive singular solution to (Q2σ,�). As
a notational shorthand, we adopt the convention that u refers to a conformal factor
relating the metric g to the round metric, i.e., g = u4/(n−2σ)g0, while u refers to a
conformal factor relating the metric g to the Euclidean metric, i.e., g = u4/(n−2σ)δ,
with the two related by u = u · usph. Hence, we aim to construct positive singular
solutions u ∈ C∞(Rn \ �) to the following fractional higher order Yamabe equation
with the prescribed isolated singularities

{
(−�)σu = fσ (u) in R

n \�,
u(x) = O(|x |2σ−n) as |x | → +∞, (Q2σ,�)

where σ ∈ (1,+∞) with n > 2σ . The subset sing(u) := � ⊂ R
n is called the

singular set, which is assumed to be� = {x1, · · · , xN } for some N ∈ N and such that

lim inf
d(x,�)→0

u(x) = +∞.

We are interested in fast-decaying solutions; we assume the following condition
lim|x |→+∞ u(x) = 0. The integral operator on the right-hand side of (Q2σ,�) is the
so-called fractional higher order Laplacian which is defined as

(−�)σ := (−�)s ◦ (−�)m,

where m := [σ ] and s := σ − [σ ].
Here (−�)m = (−�)◦ · · · ◦ (−�) denotes the poly-Laplacian and (−�)s denotes

the fractional Laplacian defined as

(−�)su(x) := p.v.
∫
Rn

Ks(x − y)[u(x)− u(y)]dy,

where Ks : R
n × R

n → R is a singular potential given by

Ks(x − y) := κn,s |x − y|−(n+2s) (2)
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with
κn,s = π− n

2 22ss�
(n
2

+ s
)
�(1 − s)−1.

The nonlinearity fσ : R → R in the left-hand side of (Q2σ,�) is given by

fσ (ξ) = cn,σ |ξ | n+2σ
n−2σ ,

where

cn,σ := 22σ�

(
n + 2σ

4

)2

�

(
n − 2σ

4

)−2

is a normalizing constant. We remark that this nonlinearity has critical growth in the
sense of the Sobolev embedding Hσ (Rn) ↪→ L2∗

σ (Rn), where 2∗
σ := 2n

n−2σ .
Our main result in this manuscript extends this result for the remaining cases. We

are based on the unified approach given by Ao et al. [36] and Jin and Xiong [37]
to prove the existence of solutions to our integral equation, which can be stated as
follows:

Theorem 2 Let σ ∈ (1,+∞] with n > 2σ . For any configuration � = {x1, . . . , xN }
with N ≥ 2, one can find a smooth positive singular solution to (Q2σ,�) such that
sing(u) = �.

In [37], the authors use a dual representation and maximization methods to study
the existence of Emden–Fowler solution on the range σ ∈ (0, n2 ). Although this
representation is enough to prove the existence of blow-up limit solutions by direct
maximization methods, it is unsuitable for our gluing technique. This paper follows
the approach in [36] with the dual equation (Q′

2σ,�). Nevertheless, we need to give an
alternative proof to describe the local behavior near each isolated singularity in terms
of the bubble tower solution (see Lemma 4.10). This alternative proof is the main
feature of this paper since it enables us to extend the techniques in [36] for integral
equations that cannot be realized as the dual formulation of a differential equation,
which is undoubtedly of independent interest.

Instead, we notice that (Q2σ,�) has a dual counterpart, which is given by

{
u = (−�)−σ ( fσ ◦ u) in R

n \�,
u(x) = O(|x |2σ−n) as |x | → +∞, (Q′

2σ,�)

where (−�)−σ denotes the inverse operator of the standard higher order fractional
Laplacian, namely

(−�)−σ fσ (u(x)) := (Rσ ∗ fσ (u))(x) = p.v.
∫
Rn

Rσ (x − y) fσ (u(y))dy,

where Rσ : R
n × R

n → R is the Riesz potential given by

Rσ (x − y) := Cn,σ |x − y|−(n−2σ) (3)
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with Cn,σ > 0 a normalizing constant. Our starting point in this paper will be to prove
that (Q2σ,�) and (Q′

2σ,�) are equivalent (see Lemma 3.3).
When σ ∈ N is integer, that is σ = m, Eq. (Q2σ,�) becomes the poly-harmonic

equation {
(−�)mu = fm(u) in R

n \�,
u(x) = O(|x |2m−n) as |x | → +∞. (P2m,�)

The most natural case of (P2m,�) is when m = 1. In this situation, this equation
becomes the classical Lane–Emden equation. On this subject, Mazzeo and Pacard
[46, Theorem 2] based on a gluing technique via ODE theory to prove an existence
theorem. Furthermore, when σ ∈ (0, 1), we arrive at

{
(−�)su = fs(u) in R

n \�,
u(x) = O(|x |2s−n) as |x | → +∞. (F2s,�)

Recently, Ao et al. [8, Theorem 1.1] extended the earlier existence results for this
case. Their construction is substantially different from the previous one and relies on
the concept of a bubble tower (or Half-Dancer solutions). We can summarize these
results in the following statement:

Theorem A Let σ ∈ (0, 1] with n > 2σ . For any configuration � = {x1, . . . , xN }
with N ≥ 2, one can find a smooth positive singular solution to (Q2σ,�) such that
sing(u) = �.

Let us briefly explain our strategy for the proof.Weare basedonSchoen’s [53] tactic,
which consists in finding an explicit infinite set of functions that span an approximate
nullspace, such that the linearized nonlinear nonlocal operator around this infinite-
dimensional family of solutions is invertible on its orthogonal complement. He first
solves the equation on the complement. Then he provides a set of balancing conditions
to ensure that the solution to this restricted problem is a solution to the original problem.
This method was recently extended for fractional operators [6].

This technique set differs substantially from the one in [46]. In their construction,
the authors obtain a one-parameter family of solutions which blows up quickly enough
near the singular set. These solutions are different in spirit from the ones in the non-
local case, since blow-limit Delaunay solutions for the scalar curvature problem are
classified to depend only on two parameters in [18]. Then, by linearizing the problem
around these solutions families, the resulting linear operator is proved to be surjective
on some reasonable space of functions, at least when the neck size parameter is suffi-
ciently small. A standard iteration argument may be used to obtain an exact solution to
(Q2σ,�) with a suitable blow-up rate. This strategy derives from its connections with
the earlier constructions of the CMC with Delaunay-type ends [48]. Compared with
the fractional case σ ∈ (0, 1), the main difference in our strategy is the proof of the
refined asymptotics near half-bubble towers solutions, which holds in a more general
setting.

Using this approach, we can perturb each bubble within the tower separately and
construct a bubble tower at each singularity, and as an appropriate approximate solution
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to (Q2σ,�). However, it is essential to note that the linearization of this approxi-
mate solution is not injective, as there is an infinite-dimensional kernel. As a result,
an infinite-dimensional Lyapunov–Schmidt reduction procedure is employed. This
approach is similar to Kapouleas’ CMC construction [38], which Malchiodi adapted
in [44] to produce new entire solutions for a semilinear equation with a subcritical
exponent that differ from the well-known spike solutions since they decay to zero
when moving away from three half-lines and do not tend to zero at infinity. For this,
he constructed a half-Dancer solution along each half-line. Whence, to solve the orig-
inal problem from the perturbed one, an infinite-dimensional system of Toda-type
needs to be solved, which arises from studying the interactions between the different
bubbles in the tower. The most robust interactions occur in the zero-mode level and
turn into some compatibility conditions (see Definition 5.5). In this fashion, a config-
uration satisfying such conditions is called balanced, related to well-known balancing
properties enjoyed by the sum of the Pohozaev invariants. Nonetheless, the remaining
interactions can be made small and are dealt with through a fixed-point argument.

These compatibility conditions do not restrict the location of the singularity points
but only affect the Delaunay parameter (neck size) at each end. We also note that due
to the heavy influence of the underlying geometry, the first compatibility condition
is similar to the ones found in [47] for the local case σ = 1. However, the rest of
the configuration depends on the Toda-type system. In the local setting, a similar
procedure to remove the resonances of the linearized problem was considered in [10],
but the Toda-type system was finite-dimensional in their case.

On the technical level, our strategy is to employ the gluing method and Lyapunov–
Schmidt reduction method. First, we find a suitable approximate solution: a perturba-
tion of the summation of half-Delaunay solutions with a singularity at each puncture.
Then, use the reduction method to find a perturbed solution that satisfies the associ-
ated linearized problem with the right-hand side given by some Lagrangian multiplier
containing the approximate kernels of the linearized operator. This family of kernels
spans an infinite-dimensional set called the approximate null space. The last step is
to determine the infinite-dimensional free parameter set such that all the coefficients
of the projection on approximate null space vanish. This problem is reduced to the
solvability of some infinite-dimensional Toda system around each singular point. A
fundamental property in the proof is to have a sufficiently good approximate solution
(a half-Dancer) so that all the estimates are exponentially decreasing in terms of the
bubble tower parameter. A fixed-point argument in suitable weighted sequence spaces
then solves the problem of adjusting the parameters to have all equal to zero.

We remark that instead of relying on the well-known extension problem for the
fractional Laplacian [17], we are inspired by the approach in the approach given by
Delatorre et al. [26] to rewrite the fractional Laplacian in radial coordinates in terms of
a new integro-differential operator in logarithmic cylindrical coordinates. In our case,
such an extension does not exist in general. We emphasize that our proof is written
solely in the dual formulation, and it can be extended to general integral equations not
arising as the dual representation of a differential equation.

In light of the seminal result of Mazzeo, Pollack, and Uhlenbeck [49] (see also
[41]), it is natural to wonder if the marked moduli space in (1) can be furnished with
more structure. It is believed that the result below should hold
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Conjecture 1 Let σ ∈ (0,+∞] with n > 2σ . For any singular set � ⊂ S
n such that

#� = N with N ≥ 2, the marked moduli space of complete constant fractional higher
order singular Q-curvature metrics on the punctured round sphere M2σ,N (g0) is an
analytic manifold with formal dimension equal the number of isolated singularities,
that is, dim(M2σ,N (g0)) = N.

Another possible development is to study the case inwhich a singular set is a disjoint
union of smooth submanifolds with possible distinct positive Hausdorff dimensions.
In this situation, it would be interesting to prove that the moduli space defined in
(1) is still nonempty and, in strong contrast with the case of isolated singularities, is
infinite-dimensional; this will be the topic of a forthcoming paper.

Let us explain this case in more detail. It is well known that the character of the
analysis required to prove the existence of solutions when R(g) < 0, which dates
back to the work of Loewner and Nirenberg [43] (see also [11, 29]), is fundamentally
different than in the positive scalar curvature case. Therefore, most of the literature is
concentrated on the positive scalar curvature case R(g) > 0. In this setting, it is natural
to have a solution one needs to impose some necessary conditions on the dimension.
More challenging it would be to construct solutions to (Q2σ,�) with uncountable
isolated singularities, for instance, in the lattice � = Z

n . The existence of weak
solutions with larger dimension singular set for the singular Yamabe equation has
been studied by Mazzeo and Smale [50] and by Mazzeo and Pacard [46] for the scalar
curvature case. As well as by Hyder and Sire [35] for the (fourth order) Q-curvature
metrics, and by Ao et al. [6] for the (fractional order) Q-curvature metrics, based on
the construction of entire solutions from [7].

Moregenerally, such solutionsmaybe constructedonan arbitrary compactmanifold
(Mn, g) of nonnegative scalar curvature R(g) ≥ 0 whenever the singular set is a finite
disjoint union of submanifolds with positive bounded Hausdorff dimension, which we
describe as follows. Given σ ∈ (0,+∞] with n > 2σ and N ≥ 2, we let � ⊂ S

n be
a finite disjoint union of submanifolds � = �0 ∪ �+, where �+ = ∪d

�=1�
k�
� with

k� := dimH(��) denoting its Hausdorff dimension. Furthermore, we denote by

Mk
2σ,�(g0) =

{
g ∈ [g0] : g is complete on S

n \�k and Q2σ (g) ≡ Qn,σ

}

the moduli space of complete constant fractional higher order Q-curvature metrics
with higher dimensional singularities. Notice that we simply denote M0

2σ,�(g0) =
M2σ,�(g0).

To summarize this discussion, we have the following statement:

Theorem B Let σ ∈ (0,+∞] with n > 2σ . Assume that � = �0 ∪ �+ is a finite
disjoint union of submanifolds satisfying�0 = ∅ and�+ = ∪d

�=1�
k�
� with 0 < k� <

n−2σ
2 . Then, there exists a metric g ∈ Mk

2σ,�(g0) that sing(g) = �. In particular,

one has Mk
2σ,�(g0) 	= ∅ and it is an infinite-dimensional analytic manifold.

With a mind on this statement, it would be natural to prove a similar result as below

Conjecture 2 Let σ ∈ (0,+∞] with n > 2σ . Assume that � = �0 ∪ �+ such that
#�0 = N with N ≥ 2 and �+ = ∪d

�=1�
k�
� with 0 < k� <

n−2σ
2 . Then, there

123



Complete Metrics with Constant Fractional Higher Order Q-Curvature Page 9 of 77 6

exists a metric g ∈ Mk
2σ,�(g0) satisfying that sing(g) = �. In particular, one has

Mk
2σ,�(g0) 	= ∅ and it is an infinite-dimensional analytic manifold.

As usual, we need to prove the existence of positive solutions to the GJMS equation
on the conformally flat case S

n \S
k � R

n \R
k with fast decay away from the singular

set. Moreover, the dimension estimate above is sharp in the same sense of González et
al. [31]. Namely, if a completemetric blows up at a smooth k-dimensional submanifold
and is polyhomogeneous, then k ∈ R+ must satisfy the restriction above. All the
analysis for this type of equation comes from its conformal properties, which produce
a geometric interpretation of scattering theory and conformally covariant operators.
Exploiting the conformal equivalence R

n \ R
k � S

n−k−1 × H
k+1, where R

n+1+ is
replaced by anti-de Sitter (AdS) space, but the arguments run in parallel. In the same
direction but with another flavor, we quote the multiplicity results in [4, 12–14, 21],
which also exploit this conformal invariance and are based on a topological bifurcation
technique; this is believed to be true in themuchbroader case of conformally variational
invariants (cf. [19, 20]).

One could extend this construction in a more geometric direction for not-round
metrics. On this subject, we cite [15, 52] for nonflat gluing constructions for the
constant curvature equation. Recently, in [2], a similar gluing construction is used to
prove existence results for fourth-order constant Q-curvature nondegenerate metrics
with suitable growth conditions on the Weyl tensor.

We now describe the plan for the rest of the paper. In Sect. 2, we establish some
terminology that will be used throughout the paper. In Sect. 3, we prove the dual
representation formula relating (Q2σ,�)with (Q′

2σ,�). InSect. 4,we classifyDelaunay-
type solutions as bubble towers. In Sect. 5, we provide balancing equations. Next, we
define balanced configuration parameters and admissible perturbation sequences. We
use this to define approximate solutions and prove some estimates for the linearized
operator around this approximating family. In Sect. 6, we summarize some estimates
involving the coefficients of the projection on the approximate null space. In Sect. 7,
we reduce the proof of Theorem 2 to solving an infinite-dimensional Toda system.We
prove that under admissibility conditions, this system can be solved. In Appendix A,
we recall some estimates concerning the interaction between two spherical solutions
with different centers and radii.

2 Notations

We establish some notations and definitions that we will use frequently throughout
the text for easy reference.

• m := �σ� is the integer part of σ , that is, be the greatest integer that does not
exceed σ ;

• s := {σ } is the fractional part of σ , that is, s := σ − �σ�;
• 0 < ξ, ν, ζ1 � 1 are small constants;
• C > 0 is a universal constant that may vary from line to line and even in the same
line.

• a1 � a2 if a1 ≤ Ca2, a1 � a2 if a1 ≥ Ca2, and a1 � a2 if a1 � a2 and a1 � a2.
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• u = O( f ) as x → x0 for x0 ∈ R ∪ {±∞}, if lim supx→x0(u/ f )(x) < ∞ is the
Big-O notation;

• u = o( f ) as x → x0 for x0 ∈ R ∪ {±∞}, if limx→x0(u/ f )(x) = 0 is the little-o
notation;

• u � ũ, if u = O(̃u) and ũ = O(u) as x → x0 for x0 ∈ R ∪ {±∞};
• C j,α(Rn), where j ∈ N and α ∈ (0, 1), is the Hölder space; we simply denote
C j (Rn) if α = 0.

• Wm,q(Rn) is the classical Sobolev space, where m ∈ N and q ∈ [1,+∞]; when
m = 0 we simply denote Lq(Rn) when q = 2, we simply denote H �(Rn);

• C2σ (Rn) = C2m,2s(Rn) is the classical Hölder space;
• γσ = n−2σ

2 is the Fowler rescaling exponent with γ ′
σ = n+2σ

2 its dual;
• 2∗

σ = 2n
n−2σ is the critical Sobolev exponent with 2∗′

σ = 2n
n+2σ its dual;

• A1, A2 > 0, A3 < 0 are constant defined by (A.1), (A.2), and (A.3), respectively;
• I∞ := {1, . . . , N } × N × {0, . . . , n} � �∞(R(n+1)N ) is total index set;
• p := (p1, . . . , pN ) ∈ S

nN with � := {p1, . . . , pN } ⊂ S
n ;

• x := (x1, . . . , xN ) ∈ R
nN with � := {x1, . . . , xN } ⊂ R

n ;
• L = (L1, . . . , LN ) ∈ R

N+ is a vector of periods such that |L| � 1 is large enough
arising from Proposition 5.3. Equivalently, ε = (ε1, . . . , εN ) ∈ R

N+ is a vector of
necksizes such that 0 < |ε| � 1 is small enough;

• (x, L) ∈ R
(n+1)N are the moduli space parameters and ϒconf : R

(n+1)N →
R
(n+2)N is the configuration map;

• q = (q1, . . . , qN ) ∈ R
N+ is a vector of comparable periods such that |q| � 1

is also large enough and satisfy (5.10), R = (R1, . . . , RN ) ∈ R
N and a0 =

(a10, . . . , a
N
0 ) ∈ R

nN are the deformation parameters;
• (q, a0, R) ∈ R

(n+2)N are the configurations parameters and ϒper : R
(n+2)N →

�∞τ (R(n+1)N ) is the configuration map;
• (qb, ab0, Rb) ∈ Balσ (�) denotes a balanced configuration, that is, it satisfies (B1)
and (B2).

• (a j ,λ j ) ∈ �∞τ (R(n+1)N ) (or (a j , r j ) ∈ �∞τ (R(n+1)N )) are the perturbation
sequences and ϒper : R

(n+2)N → �∞τ (R(n+1)N ) is the perturbation map;
• (a j ,λ j ) ∈ Admσ (�) denotes the admissible perturbation sequences, that is, it
satisfies (A0) and (A1); equivalently ϒ−1

per (a j ,λ j ) ∈ Balσ (�);
• ū(x,L,a j ,λ j ) ∈ C∗,τ (Rn \ �) denotes a Delaunay solution with associated error
denoted by φ(x,L,a j ,λ j ) ∈ C∗,τ (Rn \�) and ϒsol : �∞τ (R(n+1)N ) → C∗,τ (Rn \�)
is the solution map;

• ū(x,L,a j ,λ j ) ∈ Apxσ (�) is an approximate solution, that is, ϒ−1
sol (ū(x,L,a j ,λ j )) ∈

Admσ (�);
• {Zi

j�(a j ,λ j )}(i, j,�)∈I∞ ⊂ C0(Rn \ �) is the associated family of approximating
normalized cokernels;

• {cij�(a j ,λ j )}(i, j,�)∈I∞ ⊂ C0(Rn \ �) is the associated family of coefficients of
the projections on approximating normalized cokernels;

• {β ij�(a j ,λ j )}(i, j,�)∈I∞ ⊂ C0(Rn \ �) is the associated family of projections on
approximating normalized cokernels.
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3 Dual Representation Formula

This section shows that our equation and its dual are correspondents. We are based
on the removable singularity result from [9, Theorem 1.1]. We also refer to [51,
Proposition 4.1] for the integer cases σ ∈ N. In what follows, we consider the space

Ls(R
n) :=

{
u ∈ L1

loc(R
n) :

∫
Rn

|u(x)|
1 + |x |n+2s dx < +∞

}

with s ∈ (0, 1).
We first introduce the notation of distributional solutions to (Q2σ,�).

Definition 3.1 Let σ ∈ R+ and n > 2σ . We say that a smooth solution u ∈ C2σ (Rn \
�) ∩ L1

loc(R
n) to (Q2σ,�) is a solution in the distributional sense to (Q2σ,�) if the

equality below holds

∫
Rn

u(−�)σϕdx =
∫
Rn

fσ (u)ϕdx in R
n \� (3.1)

for all ϕ ∈ C∞
c (R

n \�).
Remark 3.2 One can check that smooth solutions to (Q2σ,�) are indeed distributional
solutions.

We need the following auxiliary result to prove the equivalence: a combination of
[9, Theorem 1.1 and Lemma 5.4].

Lemma A Let σ ∈ R+ and n > 2σ . If u ∈ C2σ (Rn \�)∩ L1
loc(R

n) is a distributional
solution to (Q2σ,�), then fσ ◦ u ∈ L1

loc(R
n) and u ∈ L1

loc(R
n) is a distributional

solution in R
n, that is, the distributional equation (3.1) holds. Moreover, one has

∫
Rn

fσ (u(x))

1 + |x |n−2σ dx < +∞. (3.2)

Consequently, we obtain that w ∈ C∞(Rn \�) is defined as

w(x) :=
∫
Rn

Rσ (x − y) fσ (u(y))dy (3.3)

is well defined and belongs to Ls(R
n) for every s > 0.

Finally, we also recall the Liouville theorem from [34, Lemma 2.4].

Lemma B Let σ ∈ R+ and n > 2σ . Assume that w ∈ Ls(R
n) for some s ≥ 0 and

(−�)σw = 0 in R
n,

for some σ ≥ s. Then, one has that w is a polynomial of degree at most �2s�.
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With the lemmas above, we have our main result in this section.

Proposition 3.3 Let σ ∈ R+ and n > 2σ . It holds that (Q2σ,�) and (Q′
2σ,�) are

equivalents.

Proof of Proposition 3.3 Let u ∈ C∞(Rn \ �) be a positive singular fast-decaying
solution to (Q2σ,�). From (3.2), we have that w ∈ Ls(R

n) for every s > 0, s 	= 2σ .
Hence, ifwedefine ŵ = u−w, then ŵ ∈ Ls(R

n) for all s > 0with s 	= 2σ . In addition,
since (−�)σ ŵ = 0 in R

n , we conclude that ŵ is a polynomial of degree at most 2m,
thanks to the Liouville theorem in Lemma B. Recall that we are considering solutions
satisfying lim|x |→+∞ u(x) = 0. Consequently, ŵ ≡ 0, and the dual representation
holds. ��

4 Delaunay-Type Solutions

This section is devoted to the construction of solutions for the case of a single isolated
singularity, that is,� = {0}. We are inspired in [37], which is an adaption of the earlier
constructions in [8, 26, 27] for the cases σ ∈ (0, 1) and σ = 1.

4.1 Integral Emden–Fowler Coordinates

As a matter of fact, when � = {0}, Eq. (Q2σ,�) can be rewritten as

⎧⎨
⎩
(−�)σu = fσ (u) in R

n \ {0},
lim|x |→+∞ u(x) = +∞, (Q2σ,∞)

or into its dual form
⎧⎨
⎩
u = (−�)−σ ( fσ ◦ u) in R

n \ {0}
lim|x |→+∞ u(x) = +∞. (Q′

2σ,∞)

It is straightforward to see from Proposition 3.3 that (Q2σ,∞) are (Q′
2σ,∞) equivalents.

Remark 4.1 For any σ ∈ (1,+∞] and n > 2σ , there are two distinguished solutions
to (Q′

2σ,∞), which we describe as follows:

(a) The cylindrical solution
ucyl(|x |) = an,σ |x |−γσ , (4.1)

which is singular at the origin.
(b) The standard spherical solution (also known as “bubble” solution)

usph(|x |) =
(

2

1 + |x |2
)γσ

, (4.2)

which is nonsingular at the origin.
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We remark that all nonsingular solutions to the blow-up limit problem were clas-
sified in [24], which are given by deformations of the standard bubble solution. This
reflects the invariance of equation (Q′

2σ,∞) with respect to the entire Euclidean group
with translations and dilations.

Proposition A Let σ ∈ (1,+∞] and n > 2σ . If u ∈ C2σ (Rn) is a positive smooth
nonsingular solution to (Q′

2σ,∞), then there exists λ ∈ R and x0 ∈ R
n such that

u ≡ Uλ,x0 , (4.3)

where

Uλ,x0(x) =
(

2λ

λ2 + |x − x0|2
)γσ

(4.4)

for some λ > 0 and x0 ∈ R
n. This family of solutions will be called spherical or

bubble solutions.

The problem of classifying the complete set of positive smooth singular solutions
to (Q′

2σ,∞) is much more challenging and only accomplished for a few cases. On
this subject, Chen, Li, and Ou proved that all solutions are radially symmetric with
respect to the origin. In addition, Jin and Xiong [37] only proved the existence of such
a solution by a direct maximization method. Furthermore, they also study the local
asymptotic behavior of positive singular solutions to

(−�)σu = fσ (u) in B∗
R, (Q2σ,R)

or into its dual form

u = (−�)−σ ( fσ ◦ u) in B∗
R, (Q′

2σ,R)

where B∗
R ⊂ R

n \ {0} given by B∗
R = BR(0) \ {0} is the punctured ball of radius

R > 0.
To study this class of equations, we define an important change of variables that

turns (Q2σ,∞) into an integral one-dimensional problem.

Definition 4.2 Let σ ∈ (1,+∞] and n > 2σ . We define the integral Emden–Fowler
change of variables (or cylindrical logarithm coordinates) given by

Fσ : C∞
c (B

∗
R) → C∞

c (CL) given by Fσ (u) = e−γσ t u(e−t , θ), (4.5)

where t = − ln R, θ = x/|x |, CL := (L,+∞) with L = − ln |x | and γσ := n−2σ
2 .

The inverse of this isomorphism is

(Fσ )
−1 : C∞

c (CL) → C∞
c (B

∗
R) given by (Fσ )

−1 (v) = |x |γσ v(− ln |x |, θ). (4.6)

The quantity γσ > 0 will be referred to as the Fowler rescaling exponent. From now
on, we denote by v(t, θ) := Fσ (u(x)) and u(x) := (Fσ )

−1(v(t, θ)), conversely.
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Using this change of variable, Eq. (Q2σ,R) can be reformulated as the following
one-dimensional problem:

{
(−�)σcylv = fσ (v) in CL ,
lim

t→+∞ v(t) = 0.
(O2σ,L )

Here (−�)σcyl : C2σ (CL) → C0(CL) is the operator higher order operator given by

(−�)σcyl := (−�)scyl ◦ (−�)mcyl, (4.7)

where (−�)mcyl and (−�)scyl denote the cylindrical poly-Laplacian and the fractional
Laplacian, respectively, defined as

(−�)mcyl :=
2m∑
�=0

2m∑
j=0

K (�)2m, j∂
( j)
t (−�θ)�,

where K (�)2m, j = K (�)2m, j (n) > 0 for j, � ∈ {0, . . . , 2m} are dimensional constants, and

(−�)scylv(t, θ) :=
∫ +L

−L
K̂σ (t − τ, θ − ς)[v(t, θ)− v(τ, ς)]dτdς,

where Kσ,cyl : CL × CL → R is the kernel (2) written in Emden–Fowler coordinates.
As usual, the dual form of this equation is given by

{
v = (−�)−σcyl ( fσ ◦ v) in CL ,
lim

t→+∞ v(t) = 0.
(O′

2σ,L )

Here (−�)−σcyl is the integral linear operator defined by

(−�)−σcyl ( fσ ◦ v)(t, θ) := (R̂σ ∗ ( fσ ◦ v))(t, θ)

=
∫ +∞

−∞
R̂σ (t − τ, θ − ς) fσ (v(τ, ς))dτ,

where R̂σ : CL×CL → R is theRiesz kernel (3)written inEmden–Fowler coordinates.
Henceforth, we keep the notation Kσ,cyl = K̂σ and Rσ,cyl = R̂σ for the sake of
simplicity.

Remark 4.3 Notice that (−�)−σcyl is an abuse of notation, which we keep for simplicity.
In the geometric language, this change of variables corresponds to a restriction of the
conformal diffeomorphism between the entire cylinder and the punctured space. In
other words, one has

(−�)−σcyl = P2σ (gcyl),
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where gcyl = dt2 + dθ2 stands for the cylindrical metric and dθ = e−2tδ, where δ is
the standard flat metric.

Notice that since in the blow-up limit situation (R = +∞), solutions to (Q2σ,∞)
are rotationally invariant, that is, u(x) = u(r) with r = |x |. Using this change of
variable, Eq. (Q2σ,∞) can be reformulated as the following one-dimensional problem

{
(−�)σcylv = fσ (v) in R,

lim
t→+∞ v(t) = 0.

(O2σ,∞)

Here (−�)σcyl represents the operator higher order operator (written in Emden–Fowler
coordinates (4.5)), namely

(−�)σcylv(t) :=
∫ +∞

−∞
K̂σ (t − τ)[v(t)− v(τ)]dτ, (4.8)

where K̂σ : R × R → R is a kernel given by

K̂σ (t) = 2−γ ′
σ

∫
Sn−1

| cosh(t)− 〈θ, τ 〉|−γ ′
σ dτ

=
∫
Sn−1

e−γ ′
σ t
(
1 + e−2t − 2e−t 〈θ, τ 〉

)−γ ′
σ
dτ. (4.9)

As before, the dual form of this equation is given by

{
v = (−�)−σcyl ( fσ ◦ v) in R,

lim
t→+∞ v(t) = 0.

(O′
2σ,∞)

Here (−�)−σcyl is the integral linear operator defined by

(−�)−σcyl ( fσ ◦ v)(t) := (R̂σ ∗ ( fσ ◦ v))(t)

=
∫ +∞

−∞
R̂σ (t − τ) fσ (v(τ ))dτ,

where R̂σ : R × R → R is a kernel given by

R̂σ (t) = 2−γσ ωn−2

∫ 1

−1

(
1 − ζ 21

) n−3
2 |cosh(t)− ζ1|−γσ dζ1. (4.10)

Remark 4.4 It is possible to express this kernel in terms of hypergeometric functions.
We also observe R̂σ (ξ) ∼ 1 is bounded and Hölder continuous, whereas K̂σ (ξ) ∼
|ξ |1−2s when σ ∈ (1,+∞). Furthermore, they behave qualitatively as

K̂σ (ξ) ∼ e−γ ′
σ |ξ | as |ξ | → +∞ (4.11)
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and
R̂σ (ξ) ∼ e−γσ |ξ | as |ξ | → +∞, (4.12)

where ξ := |t − τ |. We refer to [8, 37] for proof of these facts.

Using this new formulation, one has the following:

Remark 4.5 As before, there are two distinguished solutions to (O′
2σ,L ), which we

describe as follows:

(a) The cylindrical solution, which is

vcyl(t) ≡ an,σ ,

where vcyl = Fσ (ucyl) ∈ C2σ (R) with ucyl ∈ C2σ (Rn \ {0}) given by (4.1).
(b) The standard spherical solution (also known as “bubble”) which is

vsph(t) = cosh(t)γσ , (4.13)

where vsph = Fσ (usph) ∈ C2σ (R) with usph ∈ C2σ (Rn \ {0}) given by (4.2).

4.2 Asymptotic Classification of Delaunay-Type Solutions

Now we prove the existence of even solutions to (O′
2σ,L ) with large periods which

are close to the standard bubble tower solution given by (5.5) in a suitable weighted
Hölder norm.

First, for the standard bubble solution, we have the following nondegeneracy result,
which is based on [42, Lemma 5.1] and [25, Lemma 5.1]. In our situation, this is proved
in [39, Lemma A.1]. Nevertheless, we include a sketch of the proof in Appendix B for
completeness.

Lemma 4.6 Let σ ∈ (1,∞) and n > 2σ . The standard bubble solution usph ∈
C2σ (Rn) given by (4.2) satisfying (Q2σ,∞) is nondegenerate in a sense, the set of
bounded solutions to the linearized equation

φ − (−�)−σ ( f ′
σ (usph)φ) = 0 in R

n (4.14)

are spanned by the functions

γσusph + x · ∇usph and ∂xi usph for i ∈ {1, . . . , n}.

Proof See Appendix B. ��

One can also reformulate the last result as follows:
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Lemma 4.7 Let σ ∈ (1,∞) and n > 2σ . The standard bubble solution vsph ∈ C2σ (R)
given by (4.13) satisfying (O′

2σ,L) is nondegenerate in the sense that all bounded
solutions of the linearized equation

ψ − (−�)−σcyl ( f ′
σ (vsph)ψ) = 0 in R

are spanned by the translations vsph(· − T ) with T > 0.

Proof It follows by undoing the Emden–Fowler change of variables in (4.5). ��
Second, we restrict ourselves to the open interval (−L, L) equipped with Dirichlet

boundary conditions. In what follows, we fix L ∈ N. Let j ∈ N and α ∈ (0, 1),
we denote by C j,α

L (R) the classical Hölder space C j,α(R) restricted to 2L-periodic

functions on the open interval (−L, L). For α = 0, we simply denote C j
L(R). Let

� ∈ N and q ∈ [1,+∞], we will keep the notation W �,q
L (R) for the classical Sobolev

space W �,q(R) restricted to 2L-periodic functions on the open interval (−L, L). For
q = 2, we simply denote H �L(R).

To seek 2L-periodic solutions, we consider the following periodic problem:

{
v = (−�)−σ,Lcyl ( fσ ◦ v) in R,

limt→+∞ v(t) = 0,
(O′

2σ,L )

where (−�)−σ,Lcyl : C0L(R) → C2σL (R) is the integral periodic linear operator defined
by

(−�)−σ,Lcyl ( fσ ◦ v)(t) := p.v.
∫ L

−L
fσ (v(τ ))R̂σ,L(t − τ)dτ.

For this, we shall work with the norm given by

‖v‖HσL,0(R) :=
(

[v(m)]Ls
L (R)

+
m∑
�=0

‖v(�)‖2
L2
L (R)

)1/2

,

where

[v(m)]Ls
L (R)

:=
∫ L

−L

∫ L

−L
[v(m)(t)− v(m)(τ )]2K̂s,L(t − τ)dτdt .

We also define the following higher order functional space:

HσL (R) = {v ∈ C2σL (R) : ‖v‖HσL (R) < ∞}.

Furthermore, the evenness and periodicity

HσL,∗(R) = {v ∈ HσL (R) : v(t) = v(−t) and v(t + 2L) = v(t) for all t ∈ R}.

As well as, taking into consideration the boundary condition

HσL,0(R) = {v ∈ HσL (R) : v(�)(−L) = v(�)(L) = 0 for � ∈ {1, . . . ,m}}.
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Finally, a suitable space to work is

HσL,0,∗(R) = HσL,0(R) ∩ HσL,∗(R).

Here K̂s,L : (−L, L)× (−L, L) → R given by

K̂s,L(t − τ) =
∑
j∈Z

K̂s(t − τ − j L) (4.15)

is a periodic Kernel, where K̂s : R × R → R is defined as (4.9).
Now, we will introduce some standard Hölder fractional from [28, Theorem 8.2].

Lemma C Let s ∈ (0, 1) and n > 2s. Assume that p ∈ [1,+∞). Then, there exists a
constant C > 0, depending on σ and p, such that

‖v‖C0,α
L (R)

≤ C

(
‖v‖p

L p
L (R)

+
∫ L

−L

∫ L

−L

|v(t)− v(τ)|p
|t − τ |1+sp

dtdτ

) 1
p

(4.16)

for any v ∈ L p
L(R), where α = s − 1

p .

Lemma 4.8 Let σ ∈ (1,+∞] and n > 2σ . Assume that p ∈ [1,+∞) and σ ∈ (1, n2 )
is such that σ − 1

p /∈ Z. Then, there exists a constant C > 0, depending on σ and p,
such that

‖v‖C�,αL (R)
≤ C

(
‖v‖p

Wm,p
L (R)

+
∫ L

−L

∫ L

−L

|v(m)(t)− v(m)(τ )|p
|t − τ |1+sp

dtdτ

) 1
p

(4.17)

for any v ∈ W σ,p
L (R), where � = �σ − 1

p � and α = σ − 1
p − �σ − 1

p �.
Proof It is a direct consequence of Lemma C by using a standard induction argument.

��
We also need the following strong maximum principle.

Lemma 4.9 Let σ ∈ (1,+∞] and n > 2σ . If v ∈ HσL (R) ∩ C0(R) is a nonnegative
solution to (O′

2σ,L). Then, either v > 0 or v ≡ 0.

Proof Indeed, since v ≥ 0, it follows that

v = (−�)−σcyl ( fσ ◦ v) ≥ 0. (4.18)

Assume that there exists a point t0 ∈ R with v(t0) = 0, then

v(t0)− v(t) = (−�)−σcyl [ fσ (v(t0))− fσ (v(t))]

= p.v.
∫ +∞

−∞
fσ (v(t0))R̂σ (t0 − τ)dτ − p.v.
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×
∫ +∞

−∞
fσ (v(t))R̂σ (t − τ)dτ

= −p.v.
∫ +∞

−∞
fσ (v(τ ))R̂σ (t − τ)dτ ≤ 0

satisfies (4.18) only in the case v ≡ 0. ��
Now, we have the most important lemma in this section.

Lemma 4.10 Let σ ∈ (1,+∞) and n > 2σ . For any L � 1 sufficiently large, there
exist a sequence of periods (L j ) ∈ �∞(R+), an error function ψ(0,L j ) ∈ HσL (R) and
a unique positive even solution v̄(0,L j ) ∈ HσL (R) to the following periodic boundary
value problem:

{
v = (−�)−σ,Lcyl ( fσ ◦ v) in (−L, L),

v(�)(−L) = v(�)(L) = 0 for � = 1, 3, . . . , 2m − 1,
(O′

2σ,L )

which satisfy
v̄(0,L j )(t) = V̂+

(0,L j )
(t)+ ψ(0,L j )(t)

and
‖ψ(0,L j )‖Hσ (R) → 0 as L → +∞,

where V̂+
(0,L j )

= ∑
j∈Z V(0,L j )(t) with V(0,L j )(t) = cosh(t − L j ) and L j = 2 j L for

j ∈ Z is the standard bubble tower solution (see Definition 5.2) . Moreover, we have
the following Hölder estimate:

‖ψ(0,L j )‖C2σ
L (R)

� e−γσ L(1+ξ) (4.19)

for some α ∈ (0, 1) and ξ > 0 independent of the period L � 1 large.

Proof First, by symmetry v̄L ∈ C2σL (R) given by (5.2) satisfies the boundary condition
at t = ±L , that is, V̂+

(0,L j )
∈ Hσ(0,L j )

(R). Now writing v = V̂+
(0,L j )

+ ψ , we can

reformulate (O′
2σ,L ) as

Nσ,L(V̂
+
(0,L j )

+ ψ) = 0 in R,

where

Nσ,L(v) := v − (−�)−σ,Lcyl ( fσ ◦ v). (4.20)

From now on, let us fix the notation

Nσ (0, L j )(ψ) := Nσ,L(V̂
+
(0,L j )

+ ψ)
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Next, by linearizing this functional around the standard bubble tower solution, we find

Lσ (0, L j )(ψ) = Eσ (0, L j )(V̂
+
(0,L j )

)+ Sσ (0, L j )(ψ), (4.21)

where Lσ (0, L j ) : HσL (R) → HσL (R) defined as Lσ (0, L j ) := dNσ [V̂+
(0,L j )

] satis-
fies

Lσ (0, L j )(ψ) := ψ − Kσ (0, L j )(ψ), (4.22)

where

Kσ (0, L j )(ψ) := (−�)−σ ( f ′
σ ◦ V̂+

(0,L j )
)ψ =

∫ L

−L
f ′
σ (V̂

+
(0,L j )

)ψR̂σ,L(t − τ)dτ
(4.23)

represents the derivative of the nonlinear functional (4.20) at the standard bubble tower
solution (5.2). Also, the superlinear term Lσ (0, L j ) : HσL (R) → HσL (R) is given by

Sσ (0, L j )(ψ)

=
∫ L

−L

[
fσ (V̂

+
(0,L j )

+ ψ)− fσ (V̂
+
(0,L j )

)− f ′
σ (V̂

+
(0,L j )

)ψ
]
R̂σ,L(t − τ)dτ.

is a superlinear term, and the remainder error term is given by

Eσ (0, L j )(V̂
+
(0,L j )

)

=
∫ L

−L

⎡
⎣ fσ

⎛
⎝∑

j∈Z
V(0,L j )(τ )

⎞
⎠−

∑
j∈Z

fσ
(
V(0,L j )(τ )

)⎤⎦ R̂σ,L(t − τ)dτ,

(4.24)

which represents the error in approximating a solution to (5.2) by a standard bubble
tower solution.

To apply classical Fredholm theory we need to prove the following claim:
Claim 1: The operator Kσ (0, L j ) : HσL (R) → HσL (R) defined in (4.23) is bounded
and compact and satisfies

∥∥Kσ (0, L j )(ψ)
∥∥
HσL (R)

� ‖ψ‖L2
L (R)

(4.25)

uniformly on L � 1 large.
Initially, we prove that the operator is bounded and compact. Indeed, by its definition,
K̂σ,L ∈ C j,α(R) for any j ∈ {0, . . . ,m} and some α ∈ (0, 1). Moreover, for each j ,
we have ∣∣∣∣ d

j

dt j
K̂σ,L(t)

∣∣∣∣ � e−c j |t | (4.26)
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uniformly on L � 1 large. Similarly, we have

|V̂+
(0,L j )

| � e−c|t |

uniformly on L � 1 large. By Hölder’s inequality, it follows directly

∥∥∥Kσ (0, L j )(ψ)
( j)
∥∥∥
L2
L (R)

� ‖ψ‖L2
L (R)

for all j ∈ {0, . . . ,m}

uniformly on L � 1 large.
Also, using the Hölder continuity of (K̂σ,L)(m) ∈ C0,α+s(R), we have

∣∣∣Kσ (0, L j )(ψ)
(m)(τ )− Kσ (0, L j )(ψ)

(m)(t)
∣∣∣

≤
∫ L

−L
f ′
σ (V̂

+
(0,L j )

(ξ))

∣∣∣∣ d
m

dξm
(K̂σ,L(τ − ξ)− K̂σ,L(t − ξ))

∣∣∣∣ |ψ(ξ)|dξ
�
∫ L

−L
|ψ(ξ)||t − τ |αdξ.

Thus, by using the asymptotic behavior of the kernel near the origin given by (4.11)
and (4.26) combined with the last inequality, we obtain

[
Kσ (0, L j )(ψ)

]
Ls
L (R)

=
∫ L

−L

∣∣∣Kσ (0, L j )(ψ)
(m)(τ )− Kσ (0, L j )(ψ)

(m)(t)
∣∣∣2 K̂σ,L(t − τ)dτdt

� ‖ψ‖L2
L (R)

,

uniformly on L � 1 large,which proves (4.25). In conclusion, by compact embedding,
the desired conclusion holds for the map Kσ (0, L j ) : HσL (R) → HσL (R).

The proof of the first claim is now finished.
Second, now in order to apply Fredholm alternative to conclude that for any h ∈

L2
L(R), there exists a unique solution ψ(0,L j ) ∈ HσL (R) to the linear inhomogeneous

problem
ψ(0,L j ) − Kσ (0, L j )(ψ(0,L j )) = h in (−L, L).

One needs to prove the uniqueness result below:
Claim 2: The linear homogeneous equation

ψ − Kσ (0, L j )(ψ) = 0 in (−L, L)

admits only zero solutions in L2
L(R).

As amatter of fact, note that the equation abovewithHölder’s inequality yields directly
that

‖ψ‖L∞
L (R)

� ‖ψ‖L2
L (R)

. (4.27)
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Next, we use the nondegeneracy of the standard bubble solution in Lemma 4.6 to
conclude that ψ ≡ 0, and thus we prove Claim 2.

Lastly, by the standard fixed-point argument, a unique solution ψ(0,L j ) ∈ HσL (R)
to (4.21) satisfying the estimate

‖ψ(0,L j )‖HσL,0(R) � ‖Eσ (0, L j )(V̂
+
(0,L j )

)‖L2
L (R)

, (4.28)

to conclude the proof of the proposition, we are left to obtain estimates for the right-
hand side of the last inequality.

This is the content of our third claim.
Claim 3: It holds that ‖ψ‖HσL,0(R) � e−γσ L(1+ξ) for some ξ > 0 uniformly on L � 1
large.
In fact, using (5.2) it follows

Eσ (0, L j )(V̂
+
(0,L j )

) = cn,σ

∫ L

−L

⎡
⎢⎣
⎛
⎝∑

j∈Z
V(0,L j )(τ )

⎞
⎠

n+2σ
n−2σ

−
⎛
⎝∑

j∈Z
V(0,L j )(τ )

n+2σ
n−2σ

⎞
⎠
⎤
⎦ R̂σ,L(t − τ)dτ.

Since by symmetry, we have V(0,−L j )(t) ≤ V(0,L j )(t) for t ≥ 0, it holds

|Eσ (0, L j )(V̂
+
(0,L j )

)|

�
∫ L

−L

⎛
⎝V

4σ
n−2σ
(0,∞)

∑
j∈Z∗

V(0,L j )(τ )+
∑
j∈Z∗

V(0,L j )(τ )
n+2σ
n−2σ

⎞
⎠ R̂σ,L(t − τ)dτ

�
∑
j∈Z∗

∫ L

−L
V(0,∞)(τ )

4σ
n−2σ V(0,L j )(τ )R̂σ,L(t − τ)dτ

+
∑
j∈Z∗

∫ L

−L
V(0,L j )(τ )

n+2σ
n−2σ R̂σ,L(t − τ)dτ. (4.29)

From (4.29), we find

∫ L

−L
|Eσ (0, L j )(V̂

+
(0,L j )

)|2dt

�
∫ L

−L

⎛
⎝∑

j∈Z∗

∫ L

−L
V(0,∞)(τ )

8σ
n−2σ V(0,L j )(τ )

2R̂σ,L(t − τ)2dτ

+
∑
j∈Z∗

∫ L

−L
V(0,L j )(τ )

2n+4σ
n−2σ R̂σ,L(t − τ)2dτ

⎞
⎠ dt
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�
∑
j∈Z∗

∫ L

−L

∫ L

−L
V(0,∞)(τ )

8σ
n−2σ V(0, L j )(τ )

2R̂σ,L(t − τ)2dτdt

+
∑
j∈Z∗

∫ L

−L

∫ L

−L
V(0,L j )(τ )

2n+4σ
n−2σ R̂σ,L(t − τ)2dτ

=: I1 + I2. (4.30)

To estimate these two terms, we fix α ∈ (0, 1) and subdivide R = {|t | ≤ αL} ∪̇
{|t | ≥ αL}. Then, we use the exponential decay of the standard bubble solution from
Proposition B to obtain

∑
j∈Z∗

V(0,L j ) � e−γσ L(2−α) and
∑
j∈Z∗

V(0,L j ) � e−γσ L . (4.31)

Hence, by substituting in (4.31) into the first term in (4.30), we obtain

I1 =
∑
j∈Z∗

∫ L

−L

∫ L

−L
V(0,∞)(τ )

8σ
n−2σ V(0,L j )(τ )

2R̂σ,L(t − τ)2dτdt

� e−2γσ L(2−α) + e
−2γσ L

(
4σα
n−2σ

)
e−2γσ Le

−2γσ L
(
n+2σ
n−2σ

)

� e−2γσ L(2−α) + e−2γσ L(1+ξ) (4.32)

for some ξ > 0 (depending only on n, σ , and α), where we used the asymptotic
behavior of the Kernel (4.12) for τ → +∞ large and the fact that it is bounded for
τ → 0 small.
Furthermore, by substituting (4.31) into the second term in (4.30), we have

I2 =
∑
j∈Z∗

∫ L

−L

∫ L

−L
V(0,L j )(τ )

2n+4σ
n−2σ R̂σ,L(t − τ)2dτdt � e−2γσ L(2−α) + e−2γσ L( n+2σ

n−2σ ).

(4.33)

In conclusion, by substituting (4.32) and (4.33) into (4.29), we have

‖Eσ (0, L j )(V̂
+
(0,L j )

)‖L2(R) � e−γσ L(1+ξ)

for some ξ > 0 uniformly on L � 1 large, which combined with (4.28) proves the
third claim.

Finally, by standard estimates in Lemma 4.8 combined with the regularity lifting
theorem from[23,Theorem3.3.1] applied to (4.21), it follows thatψ(0,L j ) ∈ HσL,0,∗(R)
is smooth and satisfies

‖ψ(0,L j )‖C2σ+α(R) � e−γσ L(1+ξ)

for some ξ > 0 independent of L � 1 large.
Therefore, the maximum principle in Lemma 4.9 concludes the proof of the propo-

sition. ��
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Remark 4.11 It is worth noticing that the last proof differs in spirit from the local
inversion technique in [36, Proposition 2.3]. Instead of using this method, we give an
alternative proof based on the dual formulation from Lemma 3.3. This technique is of
independent interest to a larger class of integral equations not necessarily arising as
the dual of a differential equation.

Remark 4.12 We notice that it is straightforward to extend the local inversion method
in [36, Proposition 2.3] at least for the higher order local cases σ = m ∈ N. To verify
this fact, we write the poly-harmonic operator in Emden–Fowler coordinates, which
gives us

(−�)mcyl := (−�)mrad + (−�)mang
with

(−�)mrad := ∂
(m)
t − K (0)2m−2∂

(2m−2)
t + · · · + (−1)mK (0)1 ∂

(1)
t + (−1)m+1K (0)0 ,

and

(−�)mang :=
2m∑
�=1

2m∑
j=0

(−1)
j+2
2 K (�)2m, j∂

( j)
t (−�θ)�,

where K (�)2m, j = K (�)2m, j (n) > 0 for j ∈ {0, . . . , 2m} and � ∈ {1, . . . , 2m} are dimen-
sional constants. For this computation, we refer the interested reader to [5]. After
that, we need to build on the classification result from standard bubbles for the crit-
ical Sobolev embedding Hm(Rn) → L2∗

m (Rn), where 2∗
m := 2n

n−2m from [54] and a
standard nondegeneracy technique as in Lemma 4.6.

As an immediate consequence of the last proposition, one has

Corollary 4.13 Let σ ∈ (1,+∞) and n > 2σ . For any L � 1 sufficiently large, there
exist a sequence of periods (L j ) ∈ �∞(R+), an error function ψ(0,L j ) ∈ HσL (R) and
a unique positive even periodic solution v̄(0,L j ) ∈ HσL (R) to (O′

2σ,L) satisfying

v̄(0,L j )(t) = V̂+
(0,L j )

(t)+ ψ(0,L j )(t)

and
‖ψ(0,L j )‖HσL (R) → 0 as L → +∞,

where V̂+
(0,L j )

∈ C2σ (R) is the standardbubble tower solution givenby (5.5).Moreover,
we have the following Hölder estimate:

‖ψ(0,L j )‖C2σ
L (R)

� e−γσ L(1+ξ) (4.34)

for some α ∈ (0, 1) and ξ > 0 independent of the period L � 1 large.

Since (O2σ,∞) is translational invariant, we now will use the periodic solution
v̄(0,L j ) which attains its minimum at the points t = 2 j L with j ∈ Z. Indeed, using
Lemma 4.10, this periodic solution can be expressed as a perturbation of a bubble
tower with estimated error.
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Definition 4.14 Let σ ∈ (1,+∞) and n > 2σ . For any L � 1 sufficiently large, let
us define the generalized bubble tower solution

(i) (Emden–Fowler coordinates)

v̄(0,L j )(t) := V̂+
(0,L j )

(t)+ ψ(0,L j )(t), (4.35)

where V̂+
(0,L j )

∈ C2σ (R) is the standard half-bubble tower solution given by (5.6)

and ψ(0,L j ) ∈ C2σ (R) the perturbation function constructed in Corollary 4.13.
More precisely, one has

V̂+
(0,L j )

(t) =
∑
j∈N

cosh(t − L j − L)γσ , where L j = (1 + 2 j)L for j ∈ N.

(ii) (Spherical coordinates)

ū(0,L j )(x) := Û+
(0,L j )

(x)+ φ(0,L j )(x), (4.36)

where Û+
(0,L j )

∈ C2σ (Rn \ �) is the standard half-bubble tower solution given

by (5.3) and φ(0,L j ) ∈ C2σ (Rn \ �) is the perturbation function constructed in
Corollary 5.1. More precisely, we have

Û+
(0,L j )

(x) =
∑
j∈N

(
λ j

λ2j + |x |2
)γσ

, where λ j = e−(1+2 j)L for j ∈ N.

We find better asymptotics near the isolated singularities for the deformed solution
obtained in Lemma 4.10. These refined estimates in terms of the bubble tower solution
will be a crucial part of estimating the errors in our approximate solution in the gluing
procedure in Sect. 7.

Lemma 4.15 The asymptotics holds

v̄(0,L j )(t) = vsph(t)(1 + o(1)) as L → +∞, (4.37)

or undoing the Emden–Fowler change of variables, it holds

ū(0,L j )(t) = usph(|x |)(1 + o(1)) as L → +∞.

Moreover, one has

ū(0,L j )(x) = |x |n−2σ e−γσ L(1 + o(1)) as L → +∞ (4.38)

and
εL := v̄(0,L j )(0) = e−γσ L(1 + o(1)) as L → +∞.

This parameter is called the neck size or Delaunay parameter.
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Proof Notice that for t ≤ 0 (or |x | ≥ 1), the proof of the lemma follows as a com-
bination of Corollary 4.13 together with exponential decay of the standard spherical
solution in Emden–Fowler coordinates to prove (4.37). ��

5 Approximate Solution

This section will construct a suitable approximate solution to (Q′
2σ,�). We also prove

some estimates concerning the behavior of such a solution near the singular set. As we
have mentioned, one of the main ideas is that, although we would like the approximate
solution to have Delaunay-type singularities around each point isolated singularity, it
should have a fast decay once we are away from the singular set to glue to the flat
background manifold. To this end, we will only take half a Delaunay solution (this is,
only values j ∈ N).

5.1 Local Asymptotic Behavior

In this subsection, we study the local behavior of solutions to (Q′
2σ,∞) near the isolated

singularity at the origin. Namely, we show that near the origin, it can be approximated
by a bubble tower solution. In contrast with the casesσ ∈ {1, 2, 3} onwhich a complete
classification of this local behavior is given in terms of the two-parameter family of
Delaunay solutions studied in [5, 18, 30], which are inspired by the classical result of
Korevaar et al. [40] for σ = 1 and Caffarelli et al. σ ∈ (0, 1) [16]. These will be the
building blocks in constructing suitable approximate solutions to (Q′

2σ,∞).
First, recall the local asymptotic classification result from [37].

Proposition B Let σ ∈ (1,+∞) and n > 2σ .

(i) Assume that R = +∞. For any L � 1 sufficiently large, there exists a blow-up
limit solution to (Q′

2σ,∞) denoted by uL ∈ C2σ (Rn \ {0}) and given by

u(0,L)(x) = (Fσ )
−1 (v(0,L)) = |x |−γσ v(0,L)(− ln |x |),

where vL ∈ C2σ (R) is a bounded periodic even solution to (O′
2σ,L). In addition,

one has
v(0,L)(x) = O(e−γσ L) as t → +∞.

These will be called Delaunay solutions.
(ii) Assume that 0 < R < +∞. If u ∈ C2σ (B∗

R) is a positive singular solution to
(Q′

2σ,R), then there exists a Delaunay solution with a large period, denoted by uL ,
such that

u(x) = u(0,L)(x)(1 + o(1)) as |x | → 0,

or
v(t) = v(0,L)(t)(1 + o(1)) as t → +∞,

where L � 1 is sufficiently large.
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In addition, writing Lemma 4.15 into using Emden–Fowler change of variables, we
can reformulate it as an improvement for the result above.

Corollary 5.1 Let σ ∈ (1,+∞) and n > 2σ . For any L � 1 sufficiently large, there
exist a sequence of periods (L j ) ∈ �∞(R+) such that φ(0,L j ) ∈ HσL (R

n \ {0}) and a
unique positive even solution ū(0,L j ) ∈ HσL (R

n \ {0}) to (Q′
2σ,∞) satisfying

ū(0,L j )(x) = Û+
(0,L j )

(x)+ φ(0,L j )(x),

and
‖φ(0,L j )‖HσL (Rn\{0}) → 0 as L → +∞,

where Û+
(0,L j )

∈ C2σ (Rn \ {0}) is the standard bubble tower solution given by (5.2).
Moreover, we have the following Hölder estimate:

‖φ(0,L j )‖C2σ (Rn\{0}) � e−γσ L(1+ξ) (5.1)

for some α ∈ (0, 1) and ξ > 0 independent of L � 1 large.

Based on the definition of a spherical solution in (4.2) and (4.13), we introduce the
concept of a standard bubble tower solution. In addition, in order to have fast decay
far from the singularity (t → −∞), we will need only half a bubble tower. This fact
motivates the following definition:

Definition 5.2 Let σ ∈ (1,+∞) and n > 2σ . For any L � 1 sufficiently large, let us
define the following standard bubble tower solution:

(i) (Spherical coordinates)

Û(0,L j )(x) :=
∑
j∈Z

U(0,L j )(x), (5.2)

and
Û+
(0,L j )

(x) :=
∑
j∈N

U(0,L j )(x), (5.3)

where

U(0,L j )(x) =
(

λ j

λ2j + |x |2
)γσ

with λ j = e−2 j L for j ∈ Z. (5.4)

(ii) (Emden–Fowler coordinates)

V̂(0,L j )(t) :=
∑
j∈Z

V(0,L j )(t), (5.5)

and
V̂+
(0,L j )

(t) :=
∑
j∈N

V(0,L j )(t), (5.6)
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where

V(0,L j )(t) = cosh(t − L j )
γσ with L j = 2 j L for j ∈ Z. (5.7)

These will be called the standard bubble tower solution.

As a consequence of Corollary 4.13, we will improve the last two results. Indeed,
we show that near an isolated singularity, solutions are close to some bubble tower
solution up to some controlled error.

Proposition 5.3 Let σ ∈ (1,+∞] with n > 2σ . If u ∈ C2σ (B∗
R) is a positive smooth

singular solution to (Q′
2σ,R) with R > 0, then there exist a sequence of periods

(L j ) ∈ �∞(R+) and a blow-up limit solution ū(0,L j ) ∈ C2σ (Rn \{0}) to (Q′
2σ,∞) such

that
u(x) = ū(0,L j )(x)(1 + o(1)) as |x | → 0.

More precisely, one has

ū(0,L j )(x) = Û(0,L j )(x)+ φ(0,L j )(x), (5.8)

where Û(0,L j ) ∈ C2σ (Rn \ {0}) is the standard bubble tower solution in (5.3) and
φ(0,L j ) ∈ Hσ (Rn) satisfies

‖φ(0,L j )‖C2σ (Rn\{0}) � e−γσ L(1+ξ) (5.9)

for some α ∈ (0, 1) and ξ > 0 independent of L � 1 large.

5.2 Balanced Configurations

Here, we introduce a necessary set of compatibility conditions for the configuration
parameters.

Definition 5.4 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. Given L � 1 large enough, we
will fix the vector L = (L1, . . . , LN ) ∈ R

N+ to be the Delaunay parameters, which are
also related to the neck sizes of each Delaunay solution. They will be chosen (large
enough) in the proof. They will satisfy the following conditions |Li − L| � 1 for all
i ∈ {1, . . . , N }. More precisely, they will be related by the vector q = (q1, . . . , qN ) ∈
R

N+ , which satisfy the following relations:

qi e
−γσ L = e−γσ Li for i ∈ {1, . . . , N }. (5.10)

Next, we will give some explanation about the choice of parameters. Given the
N (n+2) balancing parameters (qb, Rb, âb0) satisfying the balancing conditions (B1)
and (B2), we first choose N (n + 2) initial perturbation parameters (q, R, â0) which
are close to the balancing parameters, i.e., (5.11) and (5.12).
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Definition 5.5 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. For any fixed non-
negative vector qb = (qb1 , . . . , q

b
N ) ∈ R

N+ , let us define the vector (ab0, R
b) =

(ai,b0 , . . . , a
N ,b
0 , R1,b, . . . RN ,b) ∈ R

(n+1)N to be determined by the following bal-
ancing conditions:

qbi = A2

∑
i ′ 	=i

qbi ′(R
i,bRi ′,b)γσ |xi − xi ′ |−2γσ for i ∈ {1, . . . , N } (B1)

and

ai,b0

(λ
i,b
0 )

2
= − A3

A1

∑
i ′ 	=i

xi ′ − xi
|xi ′ − xi |2γσ+2

qbi ′

qbi
(Ri,bRi ′,b)γσ for i ∈ {1, . . . , N } (B2)

where λi,b0 = Ri,be−Lb
i , and the Lb

i ∈ R+ are defined from the qbi ∈ R+ by (5.10) for
each i ∈ {1, . . . , N } and the constants A1, A2 > 0, A3 < 0 are defined in (A.1), (A.2),
and (A.3), respectively. We denote by (qb, ab0, R

b) ∈ Balσ (�) the set of balanced
configurations.

Remark 5.6 We remark that it has been shown in [47, Remark 3] that for q :=
(qb1 , . . . , q

b
N ) ∈ R

N+ in the positive octant, there exists a solution Rb = (R1,b, . . . , RN ,b)

to equation (B1). Once this is chosen, then we can use equation (B2) to determine
ab0 = (a1,b0 , . . . , aN ,b0 ) ∈ (Rn+)N . In other words, the set of balanced configurations is
nonempty Balσ (�) 	= ∅ for all σ ∈ R+.

Although the meaning of these compatibility conditions will become apparent in
the following sections, we have just seen that they are analogous to those of [46] for
the local case. The idea is that perturbations at the base level should be very close
to those for a single bubble. This fact also shows, in particular, that even though our
problem is nonlocal, very near the singularity, it presents a local behavior due to the
strong influence of the underlying geometry. However, for the rest of the perturbation
parameters, we must solve an infinite-dimensional system of equations.

The last discussion motivates the definition below:

Definition 5.7 Let σ ∈ (1,+∞), n > 2σ and N ≥ 2. We define the so-called
configuration map ϒconf : R

(n+1)N → R
(n+2)N which associates compatible moduli

space parameters (x, L) with configuration parameters (q, a0, R). We say that a set
moduli space parameters (x, L) ∈ R

(n+1)N is compatible if its associated set of
configuration parameters (q, a0, R) ∈ Balσ (�) is balanced.

5.3 Admissible Perturbation Parameters

We also would like to introduce some perturbation parameters R ∈ R, a ∈ R
n ,

since each standard bubble has n + 1 free parameters corresponding to scaling and
translations, which is done for each bubble in the bubble tower independently. Thus,
we will have an infinite-dimensional set of perturbations.
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Definition 5.8 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. For any L � 1 sufficiently
large and L = (L1, . . . , LN ) ∈ �∞(RN+) and R = (R1, . . . , RN ) ∈ �∞(RN+) such
that (5.10) holds, let us define the full set of perturbation parameters (a j ,λ j ) =
(a1j , . . . , a

N
j , λ

1
j , . . . , λ

N
j ) ∈ �∞(R(n+1)N ), where

λij = Ri
j e

−(1+2 j)Li for i ∈ {1, . . . , N } and j ∈ Z.

We introduce the perturbation parameters we will use in the gluing technique:

Definition 5.9 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. Let R = (R1, . . . , RN ) ∈ R
N+

and q ∈ R
N+ = (q1, . . . , qN ) be such that

|Ri − Ri,b| � 1 and |qi − qbi | � 1 for i ∈ {1, . . . , N }. (5.11)

Also, we let λ0
0 = (λ

1,0
0 , . . . , λ

N ,0
0 ) ∈ R

N+ and âi0 = (â10, . . . , â
N
0 ) ∈ (Rn)N be,

respectively, given by

λ
i,0
0 = Rie− (1+2 j)

2 Li for i ∈ {1, . . . , N }

and
ai,00

(λ
i,0
0 )

2
= âi0 for i ∈ {1, . . . , N }

such that
|âi0 − âi,b0 | � 1, (5.12)

where

âi,b0 = ai,b0

(λ
i,b
0 )

2
.

For all i ∈ {1, . . . , N } and j ∈ N, let us define the sequence of perturbation parameters
(a j ,λ j ) = (a1, . . . , aN , R1, . . . , RN ) ∈ �∞(R(n+1)N ) by

Ri
j = Ri (1 + r ij ) and

aij
(λij )

2
= āij = âi0 + ãij , (5.13)

where (ã j , r j ) = (ãi , . . . , ãN , r1, . . . r N ) ∈ �∞(R(n+1)N ) satisfy

|r ij | � e−τ t ij and |ãij | � e−τ t ij for i ∈ {1, . . . , N } (5.14)

for some τ > 0, where t ij = (1 + 2 j)Li .

Definition 5.10 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. We define the so-called
perturbation map ϒper : R

(n+2)N → �∞τ (R(n+1)N ) such that it associates balanced
configurations with a sequence of admissible perturbations. A sequence of perturba-
tion parameters (a j ,λ j ) ∈ �∞(R(n+1)N ) or (a j , r j ) ∈ �∞(R(n+1)N ) is said to be
admissible if the parameters satisfy
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(A0) For j = 0, the configuration parameters ϒ−1
per (a j ,λ j ) = (q, a0, R) ∈ R

(n+2)N

is a balanced, that is, (q, a0, R) ∈ Balσ (�);
(A1) For j ≥ 1, the parameters (a j ,λ j ) ∈ �∞(R(N+1)n) satisfy the set of relations

(5.10),(5.11), (5.12), (5.13), and (5.14).

We denote by (a j ,λ j ) ∈ Admσ (�) the set of admissible configurations. Notice under
(5.13), one can work indiscriminately with either parameter. In this fashion, we call
(0, 1) ∈ �∞(R(n+1)N ) or (0, 0) ∈ �∞(R(n+1)N ) the trivial configurations.

5.4 Generalized Delaunay Solutions

We now define a family of approximate solutions to the problem using the Delaunay
solutions from the previous section. From now on, we denote by χ : R → R the
cut-off function such that

χ(x) =

⎧⎪⎨
⎪⎩
1, if 0 < |x | ≤ 1

2

0, if 1
2 ≤ |x | ≤ 1

χ(x), if |x | ≥ 1.

First, one can always assume that all the balls B2(xi ) are disjoint since we may
dilate the problem by some factor κ > 0 that will change the set � into κ� and a
function u defined in R

n \� into κ−γσ u(xκ−1) defined in R
n \ κ�.

Definition 5.11 Let σ ∈ (1,+∞) and n > 2σ . For any L � 1 sufficiently large
and L = (L1, . . . , LN ) ∈ �∞(RN+) and R = (R1, . . . , RN ) ∈ �∞(RN+) such that
(5.10) holds let (a j ,λ j ) ∈ �∞(R(n+1)N ) be its associated perturbation parameters.
Fix xi ∈ � for i ∈ {1, . . . , N }, let us define the following generalized bubble tower
solution:

(i) (Spherical coordinates)

Û(xi ,L,a j ,λ j )(x) :=
∑
j∈Z

U(xi ,Li
j ,a

i
j ,λ

i
j )
(x), (5.15)

and
Û+
(xi ,L,a j ,λ j )

(x) :=
∑
j∈N

U(xi ,Li
j ,a

i
j ,λ

i
j )
(x), (5.16)

where

U(xi ,Li
j ,a

i
j ,λ

i
j )
(x) =

(
λij

λ2j + |x − aij − xi |2
)γσ

(5.17)

with
λij = Ri

j e
−2 j Li

j for j ∈ Z

and
Li
j = Li − j Li + ln Ri

j for j ∈ Z.
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(ii) (Emden–Fowler coordinates)

V̂(xi ,L,a j ,λ j )(t) :=
∑
j∈Z

V(xi ,Li
j ,a

i
j ,λ

i
j )
(t), (5.18)

and
V̂(xi ,L,a j ,λ j )(t) :=

∑
j∈N

V(xi ,Li
j ,a

i
j ,λ

i
j )
(t), (5.19)

where
V(xi ,Li

j ,a
i
j ,λ

i
j )
(t) = cosh(− ln |x − xi − aij | − Li

j )
γσ . (5.20)

These will be called the general (half) bubble tower solutions.

We also have the most basic definition of this section. We observe that although in
the definition the solution is indexed by (x, L, a j ,λ j ), one should recall that the
configuration map from Definition 5.7 relates them and by the perturbation map
from Definition 5.7, namely (x, L) = (a j (q, a0, R),λ j (q, a0, R)) and (q, a0, R) =
(q(x, L), a0(x, L), R(x, L)).

Definition 5.12 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. For any L � 1 sufficiently
large and L = (L1, . . . , LN ) ∈ �∞(RN+) and R = (R1, . . . , RN ) ∈ �∞(RN+) such that
(5.10) holds let (a j ,λ j ) ∈ �∞(R(n+1)N ) be its associated perturbation parameters.
We define its associated solution ū(x,L,a j ,λ) ∈ C∞(Rn \�) as

ū(x,L,a j ,λ j )(x) =
N∑
i=1

ū(xi ,L,a j ,λ j )(x). (5.21)

Here
ū(xi ,L,a j ,λ j )(x) =: Û+

(xi ,L,a j ,λ j )
(x)+ χi (x)φ(xi ,L,a j ,λ j )(x), (5.22)

where Û+
(xi ,L,a j ,λ j )

∈ C2σ (Rn \�) is the generalized bubble tower solution given by
(5.16) and

φ(xi ,L,a j ,λ j )(x) = φ(L,a j ,λ j )(x−xi ) and χi (x) = χ(x−xi ) for all i ∈ {1, . . . , N }
(5.23)

with φ(L,a j ,λ j ) the error function from Lemma 4.10. We say that ū(x,L,a j ,λ j ) ∈
C∞(Rn \�) is an approximate solution to (Q2σ,�), denote by ū(x,L,a j ,λ j ) ∈ Apxσ (�),
whenever (a j ,λ j ) ∈ Admσ (�). We then define the so-called perturbation map
ϒsol : �∞τ (R(n+1)N ) → C∞(Rn \ �) such that it associates balanced configurations
with sequences of admissible perturbations.

5.5 Normalized Approximate Kernels

In this subsection, we will use the aforementioned parameters to define a family of
projections on the (normalized) approximate kernels. At least for low Fourier eigen-
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modes, this family is entirely constructed by varying the parameters in the approximate
solution.

Definition 5.13 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. Assume that (a j ,λ j ) ∈
Admσ (�) is an admissible configuration as in Definition 5.5 with ū(x,L,a j ,λ j ) ∈
Apxσ (�) their associated approximate solution as in Definition 5.12.

(a) Let us introduce some notation of normalized approximate kernels.

(i) If � = 0, we set
Zi
j,0(a j ,λ j ) = ∂r ij

U(xi ,Li
j ,λ

i
j ,a

i
j )
;

for the zero-frequency Fourier eigenmodes.
(ii) If � ∈ {1, . . . , n}, we set

Zi
j,�(a j ,λ j ) = λij∂aij,�

U(xi ,Li
j ,λ

i
j ,a

i
j )

= −λij∂x�U(xi ,Li
j ,λ

i
j ,a

i
j )
.

for the low-frequency Fourier eigenmodes.

We denote by {Zi
j,�(a j ,λ j )}(i, j,�)∈I∞ ⊂ C0(Rn \ �) the family of normalized

approximate kernels.
(b) Let us introduce some notation of normalized approximate cokernels.

(i) If � = 0, we set

Z
i
j,0(a j ,λ j ) = f ′

σ (U(xi ,Li
j ,λ

i
j ,a

i
j )
)Zi

j,0(a j ,λ j );

for the zero-frequency Fourier eigenmodes.
(ii) If � ∈ {1, . . . , n}, we set

Z
i
j,�(a j ,λ j ) = f ′

σ (U(xi ,Li
j ,λ

i
j ,a

i
j )
)Zi

j,�(a j ,λ j )

for the low-frequency Fourier eigenmodes.

We denote by {Zi
j,�(a j ,λ j )}(i, j,�)∈I∞ ⊂ C0(Rn \ �) the family of normalized

approximate cokernels.

These normalized kernels satisfy some orthogonality conditions, which will be
important in applying a finite-dimensional reduction.

Lemma 5.14 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. Assume that (a j ,λ j ) ∈
Admσ (�) is an admissible configuration as in Definition 5.5 with ū(x,L,a j ,λ j ) ∈
Apxσ (�) their associated approximate solution as in Definition 5.12. Then, one has

(i) If � ∈ {1, . . . , n}, then
∫
Rn

Z
i
j,�(a j ,λ j )Z

i
j ′,�′(a j ,λ j )dx = 4(n − 2σ)2

n

(
δ�,�′ + o(1)

)
e
−(γσ+1)|t ij−t i

j ′ |,

(5.24)

where δ�,�′ is Kronecker’s delta;
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(ii) If � = 0, then

∫
Rn

Z
i
j,0(a j ,λ j )Z

i
j ′,0(a j ,λ j )dx = C0(1 + o(1))e

−γσ |t ij−t i
j ′ | (5.25)

for some C0 > 0.

Proof Initially, let us observe that by Lemma 4.6, the set of bounded solutions to

φ − (−�)−σ ( f ′
σ (U(xi ,Li

j ,λ
i
j ,a

i
j )
)φ) = 0 in R

n

is spanned by {Zi
j,0(a j ,λ j ), . . . , Z

i
j,n(a j ,λ j )} for any i ∈ {1, . . . , N } and j ∈ N.

Without loss of generality, assume in the following that xi = 0. For � = 0, we will
repeatedly use the following estimates:

∣∣∣Zi
j,0(a j ,λ j )(x)

∣∣∣ �
{|x |−γσ V(xi ,Li ,aij ,λ

i
j )
(− ln |x |), if |x | ≤ 1,

|x |−2γσ (λij )
γσ , if |x | ≥ 1.

(5.26)

In addition, we have also have

Zi
j,�(a j ,λ j )(x) = 2γσVaij ,Li ,ti

(− ln |x |) γσ+1
γσ |x − aij − xi |−γσ−1

(
x − aij − xi

)
�
.

Then, after recentering at xi = 0, it is easy to see that the following orthogonality con-
ditions (5.24) are in force. Similar estimates also hold true for � = 0, the orthogonality
condition in (5.25) is also satisfied.

The lemma is then proved. ��

5.6 Weighted Functional Spaces

It is convenient to define the suitable function spaces on which we will run our per-
turbation technique.

Definition 5.15 Let α ∈ (0, 1) and ζ1, ζ2 ∈ R such that ζ1 < 0 and ζ2 > 0. We set the
weighted norm

‖u‖Cαζ1,ζ2 (Rn\�) = ‖ dist(x, �)−ζ1u‖Cα(B1(�)) + ‖|x |−ζ2u‖Cα(Rn\B1(�)).

In other words, one that u ∈ Cαζ1,ζ2(Rn \�) if and only if

(i) (Near the singular set) it is bounded by a constant times |x − xi |ζ1 and has its
�-th-order partial derivatives bounded by a constant times |x − xi |ζ1−� for � ≤ α

near each singular point xi ∈ �.
(ii) (Away from the singular set) it is bounded by |x |ζ2 and has its �-th-order partial

derivatives bounded by a constant times |x |ζ2−� for � ≤ α.
Note that we are implicitly assuming that 0 ∈ �, in order to simplify the notation.
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Definition 5.16 Let σ ∈ (1,+∞), n > 2σ and N ≥ 2. We define the following
weighted norms:

‖u‖C∗,τ (Rn\�) = ‖u‖Cmin{ζ1,−γσ+τ },−n−2σ (R) (5.27)

and
‖h‖C∗∗,τ (Rn\�) = ‖h‖Cn+τ,−n+2σ (R), (5.28)

where
− γσ < ζ1 < min {−γσ + 2σ, 0} . (5.29)

Here 0 < τ � 1 small enough is given in the definition of the perturbation parameters
(5.13) and (5.14). In this fashion, we denote by C∗,τ (Rn \ �) and C∗∗,τ (Rn \ �) the
corresponding weighted Hölder spaces.

Let us make some observations regarding the last definition.

Remark 5.17 We emphasize that to simplify the notation, many times we will
ignore the small perturbation and just the weight near the singular set as dist
(x, �)−ζ1 , dist(x, �)2σ−ζ1 , respectively. The weights in Definition 5.16 are suitably
chosen to guarantee the invertibility and Fredholmness of the linearized operator
around approximate solutions on weighted Hölder spaces; this will be clear in the
reduction method we apply in the remaining subsections.

5.7 Perturbation of the Approximate Solution

This subsection is devoted to performing a perturbation method based on the approx-
imated solution, which requires linearizing (Q′

2σ,�) around the approximate solution
(5.21) and estimating both the weighted norm of the right-inverse for the linearized
operator given by and the associated remainder error.We emphasize that the balancing
formulas and the orthogonality conditions for the normalized kernels discussed above
will be building blocks of our construction.

Let us explain our strategy in more detail. First, we consider the nonlinear operator
defined Nσ : C0(Rn \�) → C2σ (R) given by

Nσ (u) = u − (−�)−σ ( fσ ◦ u). (5.30)

Notice that (Q′
2σ,�) can be reformulated as

Nσ (u) = 0 in R
n \�.

Next, by linearizing this operator around the approximate solution, we find a linear
operator Lσ [ū(x,L,a j ,λ j )] : C0(Rn \�) → C2σ (Rn \�) given by

Lσ [ū(x,L,a j ,λ j )](φ) = φ − (−�)−σ ( f ′
σ ◦ ū(x,L,a j ,λ j ))φ. (5.31)

For the sake of simplicity, let us denote

Lσ [ū(x,L,a j ,λ j )] := Lσ (x, L, a j ,λ j ).
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5.7.1 Quantitative Estimates

Our first estimate concerns the nonlinear operator defined as (5.30) applied to the
approximate solution ū(x,L,a j ,λ j ) ∈ C∞(Rn \�) given by (5.21), namely

Nσ (x, L, a j ,λ j ) := Nσ (ū(x,L,a j ,λ j ))

= ū(x,L,a j ,λ j ) − (−�)−σ ( fσ ◦ ū(x,L,a j ,λ j )).

We emphasize that we must suitably choose the weighted norm in (5.28) so that our
following estimates have the correct decay.

Lemma 5.18 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. Assume that (a j ,λ j ) ∈
Admσ (�) is an admissible configuration as in Definition 5.5 with ū(x,L,a j ,λ j ) ∈
Apxσ (�) their associated approximate solution as in Definition 5.12. Then, there
exists a weight ζ1 < 0 satisfying (5.29) such that

‖Nσ (x, L, a j ,λ j )‖C∗∗,τ (Rn\�) � e−γσ L(1+ξ) (5.32)

for some ξ > 0 uniformly on L � 1 large.

Proof For the sake of simplicity, we shall prove the estimate in (5.32) for the
L∞−norm. Namely, we need to quantitatively estimate the term |Nσ (ū(x,L,0,1))| and
then a applying a classical perturbation technique.

The rest of the proof will be divided into two cases.

Case 1: (a j ,λ j ) = (0, 1) for all j ∈ N.
In this case, the approximate solution ū(x,L,0,1) ∈ C∞(Rn \�) is given by

ū(x,L,0,1)(x) =
N∑
i=1

⎡
⎣∑

j∈N
U(xi ,Li

j ,0,λ
i
j )
(x)+ χi (x)φi (x − xi )

⎤
⎦ ,

where

U(xi ,Li
j ,0,λ

i
j )
(x) :=

(
λij

|λij |2 + |x − xi |2
)γσ

.

Without loss of generality, assume x1 = 0. Before we prove the estimate of
|Nσ (ū(x,L,0,1))|, we first prove the following claim:

Claim 1: The following estimate holds

|Dσ (ū(x,L,0,1))| �

⎧⎪⎨
⎪⎩

|x − xi |ζ1−2σ e−γσ L(1+ξ), if 0 < d(x, �) < 1
2 ,

e−γσ L(1+ξ), if 1
2 ≤ d(x, �) < 1,

|x |−(n+2σ)e−γσ L(1+ξ), if d(x, �) ≥ 1,

where
Dσ (ū(x,L,0,1)) :=

N∑
i=1

∑
j∈N

fσ (U(xi ,Li
j ,0,λ

i
j )
)− fσ (ū(x,L,0,1)). (5.33)
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As amatter of fact, we proceed by a direct estimate in terms in the asymptotic behavior
of the bubble tower solution.Without loss of generality, assume x1 = 0. The proof will
be divided into three steps: the exterior, transition, and interior regions, respectively.

Step 1: If d(x, �) ≥ 1, then |Dσ (ū(x,L,0,1))| � |x |−(n+2σ)e−γσ L(1+ξ).
In this region, we notice χi (x) = 0 for all i ∈ {2, . . . , N } when d(x, �) ≥ 1. Next,
using that

|U(xi ,Li
j ,0,λ

i
j )
(x)| ∼

(
λij

)γσ |x |−(n−2σ) as |x | → +∞
and recalling the relation in (5.10), we have

∣∣Dσ (ū(x,L,0,1))∣∣ = cn,σ

∣∣∣∣∣∣∣

⎛
⎝ N∑

i=1

∑
j∈N

U(xi ,Li
j ,0,λ

i
j )

⎞
⎠

n+2σ
n−2σ

−
N∑
i=1

∑
j∈N

(
U(xi ,Li

j ,0,λ
i
j )

) n+2σ
n−2σ

∣∣∣∣∣∣∣
�
(
e− (n−2σ)L

2 |x |−(n−2σ)
) n+2σ

n−2σ

� e− (n+2σ)L
2 |x |−(n+2σ),

which finishes the proof of the first step.

Step 2: If 1
2 ≤ |x | ≤ 1, then |Dσ (ū(x,L,0,1))| � e−γσ L(1+ξ) for some ξ > 0.

In this case, it is easy to verify the estimate

|Dσ (ū(x,L,0,1))| � e−γσ L(1+ξ)

for some ξ > 0.

Step 3: If 0 < |x | ≤ 1
2 , then |Dσ (ū(x,L,0,1))| � |x − xi |ζ1−2σ e−γσ L(1+ξ) for some

ξ > 0.
Notice that χ1(x) ≡ 1 and χi (x)0 for i ∈ {2, . . . , N }. By definition, it follows that

ū(x,L,0,1) = Û(x1,L1
j ,0,λ

1
j )

− (1 − χ1) φ1 +
N∑
i=2

⎛
⎝∑

j∈N
U(xi ,Li

j ,0,λ
i
j )

+ χiφi
⎞
⎠

−
∑
j∈Z\N

U(x1,L1
j ,0,λ

1
j )
.

Hence, by an easy computation, we obtain

∣∣Dσ (ū(x,L,0,1))∣∣ �

∣∣∣∣∣∣∣
∑
j∈N
(U
(x1,L1

j ,0,λ
1
j )
)
n+2σ
n−2σ −

⎛
⎝∑

j∈N
U
(x1,L1

j ,0,λ
1
j )

+ O(e−γσ (1+ξ))
⎞
⎠

n+2σ
n−2σ

∣∣∣∣∣∣∣
+ O(e−γσ (1+ξ))

�
∑
j∈N
(U
(x1,L1

j ,0,λ
1
j )
)

4σ
n−2σ e−γσ + O(e−γσ (1+ξ)))

� |x |−2σ
∑
j∈N

V
4σ

n−2σ

(x1,L1
j ,0,λ

1
j )
e−γσ L + O(e−γσ (1+ξ)), (5.34)

123



6 Page 38 of 77 J. H. Andrade et al.

where
V(x1,L1

j ,0,λ
1
j )
(− ln |x |) := Vsph(− ln |x | − L1 − 2 j L1)

and we recall that the spherical solution vsph is defined as (4.13).
Furthermore, it is straightforward to see that when 0 < |x | ≤ 1

2 there exists ξ > 0
and ζ1 < 0 satisfying

|x |−ζ1
⎛
⎝∑

j∈Z
V(x1,L1

j ,0,λ
1
j )
(− ln |x |)

⎞
⎠

4σ
n−2σ

� e−ξL1 . (5.35)

Indeed, if −∞ < t < L1 there exists C1 > 0 such that |x | ≤ C1 and

∑
j∈Z

V(x1,L1
j ,0,λ

1
j )
(− ln |x |) ≤ C1e

−γσ L1 . (5.36)

Also, if L1 ≤ t < +∞, there exists C2 > 0 such that |x | ≤ C2e−L1/2 and

∑
j∈Z

V(x1,L1
j ,0,λ

1
j )
(− ln |x |) ≤ C2. (5.37)

Finally, combining (5.34) and (5.35) implies

∣∣Dσ (ū(x,L,0,1))∣∣ � |x |ζ1−2σ e−γσ (1+ξ),

which finishes the proof of the first claim.
We now proceed to the proof of our preliminary estimate.

Claim 2: The following estimates holds

|Nσ (ū(x,L,a j ,λ j ))| �

⎧⎪⎨
⎪⎩

|x − xi |min{ζ1−τ,−γσ+τ }e−γσ L(1+ξ), if 0 < d(x, �) < 1
2 ,

e−γσ L(1+ξ), if 1
2 ≤ d(x, �) < 1,

|x |2σ−ne−γσ L(1+ξ), if d(x, �) ≥ 1.

As before, the proof will be divided into three steps as follows:
Step 1: If d(x, �) ≥ 1, then |Nσ (ū(x,L,0,1))| � |x |2σ−ne−γσ L(1+ξ).
Notice that χi (x) ≡ 0 for all i ∈ {1, . . . , N } and x ∈ R

n \ � such that d(x, �) ≥ 1.
From this, we get

Nσ (ū(x,L,0,1))

= ū(x,L,0,1) − (−�)−σ ( fσ (ū(x,L,0,1)))

=
N∑
i=1

∑
j∈N

U(xi ,Li
j ,0,λ

i
j )
(x)− (−�)−σ fσ

(
ū(x,L,0,1)

)

=
∫
Rn

⎛
⎝ N∑

i=1

∑
j∈N

fσ (U(xi ,Li
j ,0,λ

i
j )
(y))− fσ (ū(x,L,0,1)(y))

⎞
⎠Rσ (x − y)dy
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=
∫
Rn

Dσ (ū(x,L,0,1)(y))Rσ (x − y)dy

=
(∫

|y|≤1
+
∫
1≤|y|≤|x |

+
∫

|y|≥|x |

)
Dσ (ū(x,L,0,1)(y))Rσ (x − y)dy

=: I11 + I12 + I13,

where we recall that Dσ (ū(x,L,0,1)) is given by (5.33).
Applying Step 1 of Claim 1, we have

|I11| � e−γσ (1+ξ)
∫

|y|≤1
|x − y|2σ−n|y|ζ1−2σdy � |x |2σ−ne−γσ (1+ξ),

|I12| � e−γσ (1+ξ)
∫
1≤|y|≤|x |

|x − y|n−2σ |y|−(n+2σ)dy � |x |2σ−ne−γσ L(1+ξ),

and

|I13| � e−γσ (1+ξ)
∫

|y|≥|x |
|x − y|2σ−n|y|−(n+2σ)dy � |x |−ne−γσ (1+ξ).

Combining the above estimates, we finish the proof of Step 1.
Step 2: If 1

2 ≤ |x | ≤ 1, then |Nσ (ū(x,L,a j ,λ j ))| � e−γσ L(1+ξ) for some ξ > 0.
In this case, it holds

Nσ (ū(x,L,0,1))

= ū(x,L,0,1) − (−�)−σ ( fσ (ū(x,L,0,1)))

=
N∑
i=1

∑
j∈N

U(xi ,Li
j ,0,λ

i
j )

+ χ1φ1 − (−�)−σ fσ
(
ū(x,L,0,1)

)

=
∫
Rn

Dσ (ū(x,L,0,1))(y)Rσ (x − y)dy + e−γσ L(1+ξ)

=
(∫

|y|≤ |x |
2

+
∫

|x |
2 ≤|y|≤1

+
∫
1≤|y|≤2|x |

+
∫

|y|≥2|x |

)
Dσ (ū(x,L,0,1))(y)Rσ (x − y)dy

+ O(e−γσ L(1+ξ))
=: I21 + I22 + I23 + I24 + O(e−γσ L(1+ξ)).

Applying Step 2 of Claim 1, we get

|I21| � e−γσ L(1+ξ)
∫

|y|≤ |x |
2

|x − y|2σ−n|y|ζ1−2σdy

� |x |ζ1e−γσ L(1+ξ) � e−γσ L(1+ξ),

|I22| � e−γσ L(1+ξ)
∫

|x |
2 ≤|y|≤1

|x − y|2σ−n|y|ζ1−2σdy
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� |x |ζ1−2σ e−γσ L(1+ξ)
∫

|y−x |≤ 3
2

|x − y|2σ−ndy � e−γσ L(1+ξ),

|I23| � e−γσ L(1+ξ)
∫
1≤|y|≤2|x |

|x − y|2σ−n|y|−(n+2σ)dy

� e−γσ L(1+ξ)
∫

|y−x |≤3|x |
|x − y|2σ−ndy � e−γσ L(1+ξ),

and

|I24| � e−γσ L(1+ξ)
∫

|y|≥2|x |
|x − y|2σ−n|y|−(n+2σ)dy

� |x |2σ−ne−γσ L(1+ξ)
∫

|y|≥1
|y|−(n+2σ)dy � e−γσ L(1+ξ).

Consequently, the proof of Step 2 follows.

Step 3: If 0 < |x | ≤ 1
2 , then |Nσ (ū(x,L,0,1))| � |x |ζ1−τ e−γσ L(1+ξ).

Similarly to the previous steps, we obtain

Nσ (ū(x,L,0,1))

= ū(x,L,0,1) − (−�)−σ ( fσ (ū(x,L,0,1)))

=
N∑
i=1

∑
j∈N

U(xi ,Li
j ,0,λ

i
j )

+ φ1 − (−�)−σ fσ
(
ū(x,L,0,1)

)

=
∫
Rn

Dσ (ū(x,L,0,1)(y))Rσ (x − y)dy + e−γσ L(1+ξ)

=
(∫

|y|≤ |x |
2

+
∫

|x |
2 ≤|y|≤2|x |

+
∫
2|x |≤|y|≤1

+
∫

|y|≥1

)
Dσ (ū(x,L,0,1)(y))Rσ (x − y)dy

+ O(e−γσ L(1+ξ))
=: I31 + I32 + I33 + I34 + O(e−γσ L(1+ξ)).

Applying Step 3 of Claim 1, we get

|I31| � e−γσ L(1+ξ)
∫

|y|≤ |x |
2

|x − y|2σ−n|y|ζ1−2σdy � |x |ζ1e−γσ L(1+ξ),

|I32| � e−γσ L(1+ξ)
∫

|x |
2 ≤|y|≤2|x |

|x − y|2σ−n|y|ζ1−2σdy � |x |ζ1e−γσ L(1+ξ),

|I33| � e−γσ L(1+ξ)
∫
2|x |≤|y|≤1

|x − y|2σ−n|y|ζ1−2σdy

� e−γσ L(1+ξ)|x |ζ1
∫
2|x |≤|y|≤1

|y|−ndy � |x |ζ1−τ e−γσ L(1+ξ),
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and

|I34| � e−γσ L(1+ξ)
∫

|y|≥1
|x − y|2σ−n|y|−(n+2σ)dy

� e−γσ L(1+ξ)
∫

|y|≥1
|y|−(n+2σ)dy � e−γσ L(1+ξ).

Therefore, for |x | ≤ 1
2 , we conclude

|Nσ (ū(x,L,0,1))| � |x |ζ1−τ e−γσ L(1+ξ),

which gives us the desired estimate in Step 3.
By combining the last three steps, the proof of the first case is concluded.
Now we consider the case of a general configuration. We will use a perturbation

technique based on the last case in this situation.
Case 2: (a j ,λ j ) 	= (0, 1) for some j ∈ N.

Initially, we will prove the following decomposition.
Claim 3: It holds that

|Nσ (ū(x,L,a j ,λ j ))− Nσ (ū(x,L,0,1))|

≤
N∑
i=1

∑
j∈N
(−�)−σ

[
| f ′
σ (U(xi ,Li

j ,a
i
j ,λ

i
j )
)− f ′

σ (U(xi ,Li
j ,0,λ

i
j )
)|
(
|∂r ij U(x�,Li

�,a
i
�,λ

i
�)
||r ij |

+
n∑
�=1

|∂aij,�U(x�,Li
�,a

i
�,λ

i
�)
||aij,�|

)]

=
N∑
i=1

∑
j∈N
(−�)−σ

[
|∂r ij D̃

′
σ (ū(x,L,0,1))||r ij | +

n∑
�=1

|∂aij,�D̃
′
σ (ū(x,L,0,1))||aij,�|

]
,

where

D̃σ (ū(x,L,0,1)) :=
N∑
i=1

∑
j∈N

fσ (U(xi ,Li
j ,a

i
j ,λ

i
j )
)− fσ (ū(x,L,0,1)). (5.38)

To prove this fact, we will differentiateNσ (ū(x,L,0,1)) with respect to the parameters
r ij , a

i
j,�. Since the variation is linear in the displacements of the parameters, we vary

the parameter of one point at one time. First, with respect to r ij , we have

∂r ij
Nσ (ū(x,L,0,1)) = ∂r ij

U(xi ,Li
j ,a

i
j ,λ

i
j )

− (−�)−σ ( f ′
σ (ū(x,L,0,1))∂r ij

U(xi ,Li
j ,a

i
j ,λ

i
j )
)

= (−�)−σ [( f ′
σ (U(xi ,Li

j ,a
i
j ,λ

i
j )
)− f ′

σ (ū(x,L,0,1))∂r ij
U(xi ,Li

j ,a
i
j ,λ

i
j )
].

123



6 Page 42 of 77 J. H. Andrade et al.

Second, with respect to aij,�, we obtain

∂aij,�
Nσ (ū(x,L,0,1))

= (−�)−σ
[
( f ′
σ (U(xi ,Li

j ,a
i
j ,λ

i
j )
)− f ′

σ (ū(x,L,0,1)))
n∑
�=1

∂aij,�
U(x�,Li

�,a
i
�,λ

i
�)

]
.

This fact concludes the proof of Claim 3.
Next, we shall obtain L∞-estimate in the sense below. We first consider the case

of the parameters r ij .
Claim 4: The following estimate holds

∣∣∣∂r ij D̃′
σ (ū(x,L,0,1))

∣∣∣ �
{
d(x, �)min{ζ1,−γσ+τ }−2σ e−γσ L(1+ξ), if 0 < d(x, �) < 1,

|x |−(n+2σ)e−γσ L(1+ξ), if d(x, �) ≥ 1.

As before, we consider two cases separately.
Step 1: If d(x, �) ≥ 1, then

[ f ′
σ (U(xi ,Li

j ,a
i
j ,λ

i
j )
)− f ′

σ (ū(x,L,0,1))]∂r ij U(xi ,Li
j ,a

i
j ,λ

i
j )

� |x |−(n+2σ)e−γσ L(1+ξ)e−νt ij ,

for a suitable choice of ν > 0.
As a matter of fact, we have

[ f ′
σ (U(xi ,Li

j ,a
i
j ,λ

i
j )
)− f ′

σ (ū(x,L,0,1))]∂r ij U(xi ,Li
j ,a

i
j ,λ

i
j )

�
(
e−γσ L |x |−(n−2σ)

) 4n
n−2σ

e−γσ L(2 j+1)|x |−(n−2σ)

� |x |−(n+2σ)e−γσ L(1+ξ)e−νt ij ,

which by (5.13) and (5.14) concludes the proof of this step.
Step 2: If 0 < d(x, �) < 1, then

[ f ′
σ (U(xi ,Li

j ,a
i
j ,λ

i
j )
)− f ′

σ (ū(x,L,0,1))]∂r ij U(xi ,Li
j ,a

i
j ,λ

i
j )

� d(x, �)min{−γσ+τ,ζ1}−2σ e−γσ L(1+ξ)

for some −γσ < ζ1 < min{0,−γσ + 2σ } and 0 < τ � 1 small enough.
In this situation, we may assume without loss of generality that |x − xi | ≤ 1 for
i ∈ {2, . . . , N }. Hence, we proceed similarly to the proof of the estimates (5.36) and
(5.37) to find

[ f ′
σ (U(xi ,Li

j ,a
i
j ,λ

i
j )
)− f ′

σ (ū(x,L,0,1))]∂r ij U(xi ,Li
j ,a

i
j ,λ

i
j )

� |x − xi |−2σ

⎛
⎝∑

j∈N
V
(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
(− ln |x − xi |)

⎞
⎠

n+2σ
n−2σ

e−γσ L(2 j+1)

� |x − xi |ζ1−2σ e−γσ L(1+ξ)e−νt ij .
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for a suitable choice of ν > 0.
Again, we have more two cases to consider. If |t − t ij | ≥ L1, it follows

[ f ′
σ (U(xi ,Li

j ,a
i
j ,λ

i
j )
)− f ′

σ (ū(x,L,0,1))]∂r ij U(xi ,Li
j ,a

i
j ,λ

i
j )

� f ′
σ (U(xi ,Li

j ,a
i
j ,λ

i
j )
)

⎛
⎝∑
� 	= j

f ′
σ (U(x�,Li

�,a
i
�,λ

i
�)
)+ e−γσ L

⎞
⎠

� |x |− n+2σ
2
∑
� 	= j

V
4σ

n−2σ

(xi ,Li
j ,a

i
j ,λ

i
j )
V(x�,Li

�,a
i
�,λ

i
�)

+ |x |−2σV
4σ

n−2σ

(xi ′ ,Li ′
j ′λ

i ′
j ′ ,a

i ′
j ′ )
e−γσ L

� |x |− n+2σ
2 e−η|t−t j |∑

� 	= j

e−(2σ−η)|t−t ij |e−γσ |t−t i�| + |x |ζ1−2σ |x |ζ1e−2σ |t−t ij |e−γσ L

�
(
|x |− n+2σ

2 e−η|t−t ij | + |x |ζ1−2σ e−νt ij
)
e−γσ L(1+ξ),

if 0 < η < 2σ is chosen suitably. Whereas, if |t − t i�| ≤ L1 for some � 	= j , one has

[ f ′
σ (U(xi ,Li

j ,a
i
j ,λ

i
j )
)− f ′

σ (ū(x,L,0,1))]∂r ij U(xi ,Li
j ,a

i
j ,λ

i
j )

� f ′
σ (U(xi ,Li

j ,a
i
j ,λ

i
j )
)∂r ij

U(xi ,Li
j ,a

i
j ,λ

i
j )

� |x |− n+2σ
2
∑
� 	= j

V
4σ

n−2σ

(x�,Li
�,a

i
�,λ

i
�)
V(xi ,Li

j ,a
i
j ,λ

i
j )

� |x |−γσ e−η|t−t ij |eη|t−t ij |e−γσ |t−t j |e−2σ |t−t i�|

� |x |− n+2σ
2 e−η|t−t ij |e−γσ L(1+ξ)

if 0 < η � γσ is chosen small enough.
In conclusion, by combining the above two estimates, we get

[ f ′
σ (U(xi ,Li

j ,a
i
j ,λ

i
j )
)− f ′

σ (ū(x,L,0,1))]∂r ij U(xi ,Li
j ,a

i
j ,λ

i
j )

� |x |− n+2σ
2 e−τ t e−γσ L(1+ξ) + |x |ζ1−2σ e−γσ L(1+ξ)

for 0 < |x | ≤ 1, which implies

[ f ′
σ (U(xi ,Li

j ,a
i
j ,λ

i
j )
)− f ′

σ (ū(x,L,0,1))]∂r ij U(xi ,Li
j ,a

i
j ,λ

i
j )

� (d(x, �)−
n+2σ
2 d(x, �)τ + d(x, �)ζ1−2σ )e−γσ (1+ξ)

� d(x, �)min{−γσ+τ,ζ1}−2σ e−γσ (1+ξ).

The proof of this step is concluded, and so is one of the claims.
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Claim 5: The following estimate holds

∣∣∣∂aij,�D̃′
σ (ū(x,L,0,1))

∣∣∣ �
{
d(x, �)min{ζ1,−γσ+τ }−2σ e−γσ L(1+ξ), if 0 < d(x, �) < 1,

|x |−(n+2σ)e−γσ L(1+ξ), if d(x, �) ≥ 1.

The estimates are similar to the ones in the last claim, so we omit them here.
As a combination of these estimates, we have our main conclusion.

Claim 6: The following estimate holds

∣∣Nσ (ū(x,L,a j ,λ j ))− Nσ (ū(x,L,0,1))
∣∣

�
{
d(x, �)min{ζ1−τ,−γσ+τ }e−γσ L(1+ξ), if 0 < d(x, �) < 1,

|x |−(n−2σ)e−γσ L(1+ξ), if d(x, �) ≥ 1.

To prove this claim, we plug Claims 4 and 5 into Claim 3 and proceed similarly to the
proof of Claim 2.

Finally, using the definitions of the weighted norms in Definition 5.16, it is straight-
forward to see that (5.32) is a direct consequence of the last claim.

The lemma is finally proved. ��

5.7.2 Finite-Dimensional Reduction

We apply a finite-dimensional Lyapunov–Schmidt reduction to solve an auxiliary
linearized equation around an approximate solution. As usual in this method, we use
the orthogonality properties of the normalized approximate kernels and cokernels from
Lemma 5.14.

Lemma 5.19 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. Assume that (a j ,λ j ) ∈
Admσ (�) is an admissible configuration as in Definition 5.5 with ū(x,L,a j ,λ j ) ∈
Apxσ (�) their associated approximate solution as in Definition 5.12. Then, there
exists a weight ζ1 < 0 satisfying (5.29) such that for any h ∈ C∗∗,τ (Rn \ �), there
exists {cij,�(a j ,λ j )}(i, j,�)∈I∞ ⊂ R and a unique solution φ ∈ C∗,τ (Rn \ �) to the
following linearized equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Lσ (x, L, a j ,λ j )(φ) = h +

N∑
i=1

∑
j∈N

n∑
�=0

cij,�(a j ,λ j )Z
i
j,�(a j ,λ j ) in R

n \�,
∫
Rn
φZ

i
j,�(a j ,λ j )dx = 0 for (i, j, �) ∈ I∞.

(L′
2σ,a,λ)

Moreover, one has the estimate

‖φ‖C∗,τ (Rn\�) � ‖h‖C∗∗,τ (Rn\�).

uniformly on λ � 1 large. In what follows, we shall denote this error function by
φ(x,L,a j ,λ j ).
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Proof First, by multiplying equation (L′
2σ,a,λ) by the normalized approximate coker-

nels Z
i ′
j ′,�′(a j ,λ j ) given by Definition 5.13, and integrating over R

n , it follows

∫
Rn

[
φ − (−�)−σ ( f ′

σ (ū(x,L,a j ,λ j ))φ)
]
f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)Zi ′

j ′,�′(a
′
j ,λ

′
j )dx

=
∫
Rn

h f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)Zi ′

j ′,�′(a
′
j ,λ

′
j )dx

+
N∑
i=1

∑
j∈N

n∑
�=0

cij,�(a
′
j ,λ

′
j )

∫
Rn

f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)Zi

j,�(a
′
j ,λ

′
j )Z

i ′
j ′,�′(a

′
j ,λ

′
j )dx .

(5.39)

They simplify our notation, let us set

I0 =
∫
Rn

[
φ − (−�)−σ ( f ′

σ (ū(x,L,a j ,λ j ))φ)
]
f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)Zi ′

j ′,�′(a
′
j ,λ

′
j )dx

and

I1 =
∫
Rn

h f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)Zi ′

j ′,�′(a
′
j ,λ

′
j )dx .

In the next claims, we will estimate the two terms above based on the orthogonality
conditions from Lemma 5.14.
Claim 1: The following estimate holds

|I0| � ‖φ‖C∗,τ (Rn\�)e−γσ L(1+ξ)e−(ζ1−τ+γσ )t ij ′ .

Indeed, it is not hard to check that the approximate kernel Zi ′
j ′,�′(a

′
j ,λ

′
j ) satisfies the

linearized equation below:

(−�)σ Zi ′
j ′,�′(a

′
j ,λ

′
j )− f ′

σ (U(xi ′ ,Li ′
j ′λ

i ′
j ′ ,a

i ′
j ′ )
)Zi ′

j ′,�′(a
′
j ,λ

′
j ) = 0 R

n \�,

we have

I0 =
∫
Rn

f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)φZi

j ′,�′(a j ,λ j )

− (−�)−σ ( f ′
σ (ū(x,L,a j ,λ j ))φ)(−�)σ Zi ′

j ′,�′(a
′
j ,λ

′
j )dx

=
∫
Rn

[
f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)− f ′

σ (ū(x,L,a j ,λ j ))

]
φZi ′

j ′,�′(a
′
j ,λ

′
j )dx

=
⎡
⎣∫

B1(xi ′ )
+
∑
i 	=i ′

∫
B1(xi )

+
∫
Rn\

N⊔
i=1

B1(xi )

⎤
⎦
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[
f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)− f ′

σ (ū(x,L,a j ,λ j ))

]
φZi ′

j ′,�′(a
′
j ,λ

′
j )dx

=: I01 + I02 + I03.

Without loss of generality, assume that i ′ = 1 and x1 = 0. First, we consider the case
when �′ = 0. Recalling the estimates for Zi ′

j ′,0(a j ,λ j ) from (5.26), we get

|I01| =
∣∣∣∣
∫
B1

[
f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)− f ′

σ (ū(x,L,a j ,λ j ))

]
φZi ′

j ′,�′(a
′
j ,λ

′
j )dx

∣∣∣∣
� ‖φ‖C∗,τ (Rn\�)

∫
B1

∣∣∣∣ f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)

− f ′
σ (ū(x,L,a j ,λ j ))

∣∣ |x |ζ1 |Zi ′
j ′,�′(a

′
j ,λ

′
j )|dx

� ‖φ‖C∗,τ (Rn\�)
∫
B1

|x |ζ1− n+2σ
2 V

4σ
n−2σ

(xi ′ ,Li ′
j ′λ

i ′
j ′ ,a

i ′
j ′ )

∑
j 	= j ′

V
(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
dx

� ‖φ‖C∗,τ (Rn\�)
∫ +∞

0
e−(ζ1+γσ )tv

4σ
n−2σ
j ′

∑
j 	= j ′

V(xi ,Li ,aij ,λ
i
j )
dt

� ‖φ‖C∗,τ (Rn\�)e−γσ L(1+ξ)e−(ζ1+γσ )t i ′j ′ ,

since ζ1 > −γσ . Next, it holds

|I02| =
∣∣∣∣∣∣
∑
i 	=1

∫
B1(xi )

[
f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)− f ′

σ (ū(x,L,a j ,λ j ))

]
φZi ′

j ′,�′ (a
′
j ,λ

′
j )dx

∣∣∣∣∣∣
� ‖φ‖C∗,τ (Rn\�)

∑
i 	=1

∫
B1(xi )

∣∣∣∣ f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)

− f ′
σ (ū(x,L,a j ,λ j ))

∣∣∣ |Zi ′
j ′,�′ (a

′
j ,λ

′
j )||x − xi |ζ1dx

� ‖φ‖C∗,τ (Rn\�)
∑
i 	=1

∫
B1(x1)

|x − xi |ζ1−2σ (λi
′
j ′)
γσ

⎛
⎝∑

j∈N
V
(xi ,Li ,aij ,λ

i
j )
(− ln |x |)

⎞
⎠ dx

� ‖φ‖C∗,τ (Rn\�)(λi
′
j ′)
γσ e−(n+ζ1−2σ)L

� ‖φ‖C∗,τ (Rn\�)e
ζ1t i

′
j ′−2γσ L−ζ1Le−(ζ1+γσ )t

i ′
j ′

� ‖φ‖C∗,τ (Rn\�)e−γσ L(1+ξ)e
−(ζ1+γσ )t i ′j ′ .

In addition, one has

|I03| =
∣∣∣∣∣∣
∫
Rn\

N⊔
i=1

B1(xi )

[
f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)− f ′

σ (ū(x,L,a j ,λ j ))

]
φZi ′

j ′,�′(a
′
j ,λ

′
j )dx

∣∣∣∣∣∣
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� ‖φ‖C∗,τ (Rn\�)
∫
Rn\

N⊔
i=1

B1(xi )
|x |−(n−2σ)|x |−(n+2σ)(λi

′
j ′)
γσ e−2σ Ldx

� ‖φ‖C∗,τ (Rn\�)e
ζ1t i

′
j ′−2σ L

e
−(ζ1+γσ )t i ′j ′

� ‖φ‖C∗,τ (Rn\�)e−γσ L(1+ξ)e−(ζ1+γσ )t i ′j ′ ,

where we have used −γσ < ζ1 < −γσ + 2σ .
On the other hand, from (5.26), we recall

Zi ′
j ′,�′(a

′
j ,λ

′
j ) = O(|x−xi ′ |−γσ )V(xi ′ ,Li ′

j ′ ,a
i ′
j ′ ,λi ′ )

(− ln |x |)1+ 2
n−2σ for �′ ∈ {1, . . . , n}.

Using the last identity, one can get similar estimates to the ones above. In conclusion,
it is straightforward to check

|I0| =
∣∣∣∣
∫
Rn

[
φ − (−�)−σ ( f ′

σ (ū(x,L,a j ,λ j ))φ)
]
f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)Zi ′

j ′,�′(a
′
j ,λ

′
j )dx

∣∣∣∣
� ‖φ‖C∗,τ (Rn\�)e−γσ L(1+ξ)e−(ζ1+γσ )t i ′j ′ ,

which proves the claim.
Claim 2: The following estimate holds

|I1| � ‖h‖C∗∗,τ (Rn\�)e
−(ζ1+γσ )t i ′j ′ .

In fact, we have

|I1| =
∣∣∣∣
∫
Rn

h f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)Zi ′

j ′,�′(a
′
j ,λ

′
j )dx

∣∣∣∣
�
∫
B1(xi ′

‖h‖C∗∗,τ (Rn\�)|x − xi ′ |ζ1−τ |x − xi ′ |−γσ
(
e
−γσ t i ′j ′ + e

−(γσ+1)t i
′
j ′
)
dx

+
∑
i 	=i ′

∫
B1(xi )

‖h‖C∗∗,τ (Rn\�)|x − xi |ζ1−τ e−γσ t i ′j ′dx

+
∫
Rn\

N⊔
i=1

B1(xi )
‖h‖C∗∗,τ (Rn\�)|x |−(n−2σ)|x |−4σ |x |−(n−2σ)e

−γσ t i ′j ′dx

� ‖h‖C∗∗,τ (Rn\�)e
−(ζ1−τ+γσ )t i ′j ′ ,

which proves the desired estimate.
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Claim 3: The following estimate holds

∥∥∥∥∥∥
N∑
i=1

∑
j∈N

n∑
�=0

cij,�(a j ,λ j )Z
i
j,�(a j ,λ j )

∥∥∥∥∥∥C∗∗,τ (Rn\�)
� e−γσ L(1+ξ)‖φ‖C∗,τ (Rn\�) + ‖h‖C∗∗,τ (Rn\�).

As a matter of fact, we first isolate the term cij,�(a j ,λ j ) in (5.39) by inverting the
matrix ∫

Rn
f ′
σ (U(xi ′ ,Li ′

j ′λ
i ′
j ′ ,a

i ′
j ′ )
)Zi

j,�(a j ,λ j )Z
i ′
j ′,�′(a

′
j ,λ

′
j )dx .

For this, recall the orthogonality estimates from (5.24) and (5.25), which yields

∫
Rn

f ′
σ (U(xi ,Li

j ,λ
i
j ,a

i
j )
)Zi

j,�(a j ,λ j )Z
i
j,�′(a j ,λ j )dx = C0δ�,�′ for �′ ∈ {1, . . . , n},

and
∫
Rn

f ′
σ (U(xi ,Li

j ,λ
i
j ,a

i
j )
)Zi

j,�(a j ,λ j )Z
i
j ′,�′(a j ,λ j )dx = O(e−γσ |t ij−t i

j ′ |) if � 	= �′,

plus a tiny error. Then using in [44, Lemma A.6] for the inversion of a Toepliz-type
operator, one has from (5.39) that

|cij,�(a j ,λ j )| � [e−γσ L(1+ξ)‖φ‖C∗,τ (Rn\�) + ‖h‖C∗∗,τ (Rn\�)]e−(ζ1−τ+γσ )t ij

+
∑
j ′ 	= j

[e−γσ L(1+ξ)‖φ‖C∗,τ (Rn\�)

+ ‖h‖C∗∗,τ (Rn\�)]e−γσ (1+o(1))|t j−t j ′ |e−(ζ1−τ+γσ )t ij ′

� [e−γσ L(1+ξ)‖φ‖C∗,τ (Rn\�)

+ ‖h‖C∗∗,τ (Rn\�)]e−γσ (1+o(1))|t j−t j ′ |e−(ζ1−τ+γσ )t ij .

Using the estimates (5.26) of Zi
j,�(a j ,λ j ) and its equation, we split the integrals as

in Step 3 in the proof of Claim 2 in Lemma 5.18 and get in B1(pi ),

|Zi
j,�(a j ,λ j )| = |(−�)−σ ( f ′

σ (U(xi ,Li
j ,λ

i
j ,a

i
j )
)Zi

j,�(a j ,λ j ))|

� |x − xi |−γσ+2σ e
−(γσ+2σ)|t i

j ′−t ij | � |x − xi |ζ1−τ e−(γσ+2σ)|t i
j ′−t ij |.

The above two estimates yield that

|cij,�(a j ,λ j )Z
i
j,�(a j ,λ j )| � |x − xi |ζ1−τ [e−γσ L(1+ξ)‖φ‖C∗,τ (Rn\�)

+ ‖h‖C∗∗,τ (Rn\�)]e−ζ |t i
j ′−t ij |
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for some ζ > 0.

For x ∈ R
n\

N⊔
i=1

B1(xi ), one has

|cij,�(a j ,λ j )Z
i
j,�(a j ,λ j )| � (λij )

γσ |x |−(n−2σ)|cij,�(a j ,λ j )|
� |x |−(n−2σ)[e−γσ L(1+ξ)‖φ‖C∗,τ (Rn\�)

+ ‖h‖C∗∗,τ (Rn\�)]e−ζ |t i
j ′−t ij |.

Combining the above two estimates yields

∥∥∥∥∥∥
N∑
i=1

∑
j∈N

n∑
�=0

cij,�(a j ,λ j )Z
i
j,�(a j ,λ j )

∥∥∥∥∥∥C∗∗,τ (Rn\�)
� e−γσ L(1+ξ)‖φ‖C∗,τ (Rn\�) + ‖h‖C∗∗,τ (Rn\�).

The proof of the claim is concluded.
Claim 4: It holds that

‖φ‖C∗,τ (Rn\�) � ‖h̄‖C∗∗,τ (Rn\�),

uniformly on L � 1, where

h̄ = h +
N∑
i=1

∑
j∈N

n∑
�=0

cij,�(a j ,λ j )Z
i
j,�(a j ,λ j ).

We suppose by contradiction that there exist sequences of functions {h̄k}k∈N ⊂
C∗∗,τ (Rn \ �) and {φk}k∈N ⊂ C∗,τ (Rn \ �), where φk = (Lσ (a,λ))−1(h̄k) for
all k ∈ N such that ‖φk‖C∗,τ (Rn\�) = 1 and

‖h̄k‖C∗∗,τ (Rn\�) → 0 as k → +∞. (5.40)

Here we can write

h̄k = hk +
N∑
i=1

∑
j∈N

n∑
�=0

ci,kj,�(a j ,λ j )Z
i,k
j,�(a j ,λ j ),

where {ci,kj,�}k∈N ⊂ C∞(Admσ (�)), {hk}k∈N ⊂ C∗∗,τ (Rn \ �), and {Lk}k∈N ⊂ R
N

such that
max
1≤i≤N

Li
k =: |Lk | → +∞ as k → +∞

is a sequence of parameters.
Notice that

φk = (−�)−σ ( f ′
σ (ū(x,L,a j ,λ j ))φk)+ h̄k in R

n \�.
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Thus, we need to estimate the first term on the right-hand side of the last equation.
Step 1: If d(x, �) ≥ 1, then

|(−�)−σ ( f ′
σ (ū(x,L,a j ,λ j ))φk)| ≤ o(1)‖φk‖C∗,τ (Rn\�)|x |−(n−2σ) as L → +∞

Indeed, notice that

(−�)−σ ( f ′
σ (ū(x,L,a j ,λ j ))φk)

=
[∫

d(y,�)≤1
+
∫
d(y,�)≥1

]
f ′
σ (ū(x,L,a j ,λ j ))φkRσ (x − y)dy

=: I1 + I2.

Let us start with estimating the second term on the right-hand side above. First, by
Lemma 4.10, we have

ū(x,L,a j ,λ j )(y) = O(e−γσ L)|y|−(n−2σ) for d(y, �) ≥ 1,

from which we conclude

I2 � e−σ L‖φk‖C∗,τ (Rn\�)
∫
d(y,�)≥1

|y|−(n+2σ)Rσ (x − y)dy

� o(1)‖φk‖C∗,τ (Rn\�)|x |−(n−2σ). (5.41)

For the first term, we get

I1 �
N∑
i=1

∫
|y−xi |≤1

|y − xi |−2σ

⎛
⎝∑

j∈N
V(xi ,Li ,aij ,λ

i
j )
(− ln |x |)

⎞
⎠

2n
n−2σ

‖φk‖C∗,τ (Rn\�)|y − xi |ζ1 |x − y|−(n−2σ)dy

� ‖φ‖C∗,τ (Rn\�)|x |−(n−2σ)
∫

|y−xi |<1
|y − xi |ζ1−2σ

⎛
⎝∑

j∈N
V(xi ,Li ,aij ,λ

i
j )
(− ln |x |)

⎞
⎠

2n
n−2σ

dy

� ‖φ‖C∗,τ (Rn\�)|x |−(n−2σ)
∫ +∞

0
e−(n+ζ1−2σ)t

⎛
⎝∑

j∈N
V(xi ,Li ,aij ,λ

i
j )
(− ln |x |)

⎞
⎠

2n
n−2σ

dt,
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which implies

I1 � e−(n+ζ1−2σ)L |x |−(n−2σ)‖φk‖C∗,τ (Rn\�) � o(1)‖φk‖C∗,τ (Rn\�)|x |−(n−2σ).

(5.42)

Since ζ1 > −γσ , by combining estimates (5.41) and (5.42) one concludes the proof
Step 1.
Subsequently, using Step 1, we also observe that by the estimates above, it holds

sup
d(x,�)≥1

|x |n−2σ |φk(x)| � ‖h̄k‖C∗∗,τ (Rn\�) + o(1)‖φk‖C∗,τ (Rn\�) → 0 as L → +∞,
(5.43)

where we also used our contradiction assumption (5.40). Hence, one can find xi ∈ �
for some i ∈ {1, . . . , N } such that

sup
|x |≤1

|x − xi |−ζ1φk(x) ≥ 1

2
for all k ∈ N. (5.44)

In the next step, we prove an estimate contradicting the lower bound above. To simplify
the notation, we assume that xi = 0 and so |x | < 1.
Step 2: If |x | ≤ 1, then one find R � 1 large enough such that

|(−�)−σ ( f ′
σ (ū(x,L,a j ,λ j ))φk)|

� o(1)‖φk‖C∗,τ (Rn\�)|x |ζ1 + e−γσ R + e−2R |x |ζ1 as L → +∞.

As a matter of fact, similar to before, we have

|(−�)−σ ( f ′
σ (ū(x,L,a j ,λ j ))φk)|

=
[∫

d(y,�)≤1
+
∫
d(y,�)≥1

]
f ′
σ (ū(x,L,a j ,λ j ))φkRσ (x − y)dy =: I1 + I2.

In the same spirit of the estimates for h̄ above, it holds

I1 �
∫
d(y,�)≥1

e−σ L |y|−4σ |x − y|2σ−n‖φk‖C∗,τ (Rn\�)|y|−(n−2σ)dy

� o(1)‖φk‖C∗,τ (Rn\�)|x |ζ1 .

For the second term, the computation is slightly more involved. We proceed by per-
forming a standard blow-up method. Namely, let us consider the family of rescaled
functions φ̂i,kj : Ai,k

j → R defined on the annular region as

φ̂
i,k
j (x̂) =

(
λij

)−ζ1
φk(λ

i
j x̂) for k ∈ N,
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where

Ai,k
j := {x ∈ R

n : Ãi,k
j < |x | < Ãi,k

j−1}.

Here we set Ãi,k
j = Ai,k

j /λ
i,k
j , where Ai,k

j =
√
λ
i,k
j+1λ

i,k
j for k ∈ N and observe

|Rn+ \ Ai,k
j | → 0 as k → +∞.

Furthermore, it is not hard to check that φ̂i,kj ∈ C0(Ai,k
j ) satisfy the following rescaled

equation: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̂
i,k
j − cn,σ

n+2σ
n−2σ

∫
Rn

⎡
⎣ φ̂

i,k
j

(1 + |x̂ |2)2σ

⎤
⎦Rσ (x − y)dy(1 + o(1))

= (λ
i,k
j )

2σ−ζ1 h̄(λi,kj x̂) in Ai,k
j ,∫

Rn
φ̂
i,k
j [ f ′

σ (U(0,Li,kj ,λ
i,k
j ,a

i,k
j )
)Zi,kj ,�(λ

i,k
j , a

i,k
j )](λij x̂)dx̂

= 0 for i ∈ {1, . . . , N }, j, k ∈ N, and � ∈ {0, . . . , n}.
Now, we observe the estimate below holds

|hk | � ‖hk‖C∗∗,τ (Rn\�)|λi,kj x̂ |ζ1−2σ as k → +∞.

Then, there exists φ̂i,∞j ∈ C0(Ai,∞
j ) solution to the following blow-up limit equation:

⎧⎪⎨
⎪⎩

φ̂
i,∞
j − cn,σ

∫
Rn

[
f ′
σ (U(0,1)(y))φ̂

i,∞
j (y)

]
Rσ (x − y)dy = 0 in Ai,∞

j ,∫
Rn
φ̂
i,∞
j f ′

σ (U(0,1))Z
i,∞
j,� (0, 1)dx = 0.

Here Ai,∞
j = ∪k∈NAi,k

j is such that φ̂i,kj → φ̂
i,∞
j as k → +∞ in AR , where the

annular regionAR := {x ∈ R
n : R−1 ≤ |x̂ | ≤ R} is such thatAR ⊂ Ai,∞

j for R � 1
large enough which will be chosen suitably later, where we recall thatU(0,1) = usph is

the standard bubble tower solution given by (5.2) and Zi,k
j,�(a j ,λ j ) for � ∈ {0, . . . , n},

are the corresponding kernels in Definition 5.13. Therefore, by the nondegeneracy of
the standard bubble in Lemma 4.6, we conclude that the blow-up limit is trivial, that
is, φ̂i,∞j ≡ 0 and φ̂i,kj → 0 as k → +∞ in AR .
As a consequence, if we consider the original φk , this is equivalent to the uniform
convergence

|x |−ζ1φk(x) → 0 in Ai,k∞ as k → +∞, (5.45)

where Ai,k∞ := ∪ j∈NAi,k
j and Ai,k

j := {R−1λ
i,k
j < |x | < Rλi,kj }. Using the conver-

gence above, we can now estimate the remaining term

I2 =
∫
d(y,�)≤1

f ′
σ (ū(x,L,a j ,λ j ))φkRσ (x − y)dy
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�
∑
j∈N

[∫
Ai,k

j

+
∫
(Ai,k

j )
c

]
f ′
σ (ū(x,L,a j ,λ j ))φkRσ (x − y)dy =: I21 + I22,

where (Ai,k
j )

c := {y ∈ R
n : 0 < d(y, �) ≤ 1} \ Ai,k

j .
First, again from Lemma 4.10, we know

ū(x,L,a j ,λ j )(y) = |y|−γσ
⎛
⎝∑

j∈N
V
(xi ,Li ,aij ,λ

i
j )
(− ln |x |)

⎞
⎠ (1 + o(1)) for 0 < d(y, �) < 1,

from which we get

∑
j∈N

V(xi ,Li ,aij ,λ
i
j )
(− ln |x |) � e−γσ R in (Ai,k∞ )c.

Hence, the summation on the left-hand side of the last equation can be made small
enough by choosing R � 1 large enough but uniform on k � 1, which in turn implies

I22 � e−2R
∫
(Ai,k∞ )c

|y|−2σ‖φ‖C∗,τ (Rn\�)|y|ζ1 |x − y|n−2σdy � e−2R |x |ζ1 .

Additionally, from (5.45), it is direct to see

I21 �
∑
j∈N

∫
Ai,k

j

|φk ||y|−ζ1 |y|ζ1−2σ |x − y|2σ−n

⎛
⎝∑

j∈N
V(xi ,Li ,aij ,λ

i
j )
(− ln |x |)

⎞
⎠

2n
n−2σ

dy

� o(1)
∫
Ai,k

j

|y|ζ1−2σ |x − y|2σ−ndy

� o(1)|x |ζ1 .

The proof of this step is then finished.
Finally, from Step 2, we must have |x |−ζ1φk(x) = o(1) as k → +∞, which is a
contradiction with (5.44). This completes the proof of Claim 4.
Claim 5: For any h̄ ∈ C∗∗,τ (Rn \�), one can find a unique solution φ ∈ C∗,τ (Rn \�)
to (L′

2σ,a,λ).
First, we consider the space

H ⊥(Rn) =
{
φ ∈ Hσ (Rn) :

∫
Rn
φZ

i
j,�(a j ,λ j )dx = 0 for (i, j, �) ∈ I∞

}
.

Notice that Eq. (L′
2σ,a,λ) may be reformulated in terms of φ to become

φ + K (φ) = h̄ in H ⊥(Rn), (5.46)
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where h̄ is defined by duality and K : H ⊥(Rn) → H ⊥(Rn) is a linear compact
operator. Using Fredholm alternative, showing that (L′

2σ,a,λ) has a unique solution for

each h̄ is equivalent to finding a unique solution for h̄ = 0 to (5.46), which in turn
follows from Claim 4.

The proof is now a consequence of Claims 4 and 5. ��
As a consequence of the last result, we can state the last lemma

Lemma 5.20 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. Assume that (a j ,λ j ) ∈
Admσ (�) is an admissible configuration as in Definition 5.5 with ū(x,L,a j ,λ j ) ∈
Apxσ (�) their associated approximate solution as in Definition 5.12. Then, there
exists a bounded right-inverse for the linearized operator (Lσ (a j ,λ j ))

−1 : C∗∗,τ (Rn\
�) → C∗,τ (Rn \�). Moreover, the following estimate holds

‖φ‖C∗,τ (Rn\�) � ‖Lσ (a j ,λ j )
−1(φ)‖C∗∗,τ (Rn\�).

uniformly on L � 1 large.

5.7.3 Fixed-Point Argument

We prove our main result using a standard perturbation method. The main idea is to
apply a contraction theoremfor theoperatorNσ (x, L, a j ,λ j )(φ) = Nσ (ū(x,L,a j ,λ j )+
φ) on the suitably weighted norms introduced in Definition 5.16.

Proposition 5.21 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. Assume that (a j ,λ j ) ∈
Admσ (�) is an admissible configuration as in Definition 5.5 with ū(x,L,a j ,λ j ) ∈
Apxσ (�) their associated approximate solution as inDefinition 5.12. Then, for L � 1
large enough and ζ1 < 0 satisfying (5.29), there exists {cij,�(a j ,λ j )}(i, j,k)∈I∞ ⊂ R

and a solution φ ∈ C∗,τ (Rn \�) to
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Nσ (x, L, a j ,λ j )(φ) =

N∑
i=1

∑
j∈N

n∑
�=0

cij,�(a j ,λ j )Z
i
j,�(a j ,λ j ) in R

n \�,
∫
Rn
φZ

i
j,�(a j ,λ j )dx = 0 for (i, j, �) ∈ I∞,

(Q′
2σ,a,λ)

where {Zi
j,�(a j ,λ j )}(i, j,�)∈I∞ ⊂ C2σ (Rn \�) is the family of approximate normal-

ized corkernels given by Definition 5.13. Moreover, one has the estimate

‖φ(x,L,a j ,λ j )‖C∗,τ (Rn\�) � e−γσ L(1+ξ)

for some ξ > 0 depending uniformly on L � 1 large.

Proof According to Lemma 5.19, the solution operator (Lσ (a,λ))−1 : C0(Rn \�) →
C2σ (Rn \�) defined in Lemma 5.20 is well defined. Notice that ū(x,L,a j ,λ j )+φ with
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φ ∈ C∗(Rn \ �) solves equation (Q′
2σ,a,λ), if and only if, it solves the fixed-point

problem below:
φ = Bσ (a j ,λ j )(φ) in R

n \�.
HereBσ (a j ,λ j ) : C0(Rn \�) → C2σ (Rn \�) is given by

Bσ (a j ,λ j )(φ) := −(Lσ (a,λ))−1(Nσ (ū(x,L,a j ,λ j )))+ (Lσ (a,λ))−1(Rσ (a j ,λ j )(φ))

(5.47)
and Rσ (a j ,λ j ) : C0(Rn \�) → C2σ (Rn \�) is given by

Rσ (a j ,λ j )(φ) := (−�)−σ [Qσ (a j ,λ j )(φ)], (5.48)

where

Qσ (a j ,λ j )(φ) := | fσ (ū(x,L,a j ,λ j ) + φ)− fσ (ū(x,L,a j ,λ j ))− f ′
σ (ū(x,L,a j ,λ j ))φ|.

(5.49)
First, by definition, one has

‖Bσ (a j ,λ j )(φ)‖C∗,τ (Rn\�) � ‖Nσ (ū(x,L,a j ,λ j ))‖C∗∗,τ (Rn\�)
+‖Rσ (a j ,λ j )(φ)‖C∗∗,τ (Rn\�).

Second, fixing a large C � 0, we define the set

BC =

⎧⎪⎨
⎪⎩
φ ∈ C∗,τ (Rn \�) : ‖φ‖C∗,τ (Rn\�) � e−γσ L(1+ξ)
and

∫
Rn φ f ′

σ (U(xi ,Li
j ,λ

i
j ,a

i
j )
)Zi

j,�(a j ,λ j )dx = 0

for all (i, j, �) ∈ I∞

⎫⎪⎬
⎪⎭ .

We observe that the first term of the right-hand side of the equation above is estimated
in Lemma 5.18. Hence, we are left to provide similar estimates for the remaining term.
Claim 1: The following estimate holds

‖Rσ (a j ,λ j )(φ)‖C∗∗,τ (Rn\�) � e− (n−6σ)γσ L
n−2σ ‖φ‖2C∗,τ (Rn\�) + ‖φ‖

n+2σ
n−2σ
C∗,τ (Rn\�)

≤ o(1)‖φ‖C∗,τ (Rn\�).

Now, for any φ ∈ BC We must estimate the L∞-norm of the error term in (5.48). We
start by estimating the term (5.49). Indeed, it is not hard to check

|Qσ (a j ,λ j )(φ)| �

⎧⎨
⎩
ū

n−6σ
n−2σ
(x,L,a j ,λ j )

φ2, if |ū(x,L,a j ,λ j )| ≥ 1
4φ,

φ
n+2σ
n−2σ , if |ū(x,L,a j ,λ j )| ≤ 1

4φ.

Again, the proof will be divided into two steps. First, we estimate the integrand in
(5.49).
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Step 1: The estimate below holds

|Qσ (a j ,λ j )(φ)|

�

⎧⎪⎪⎨
⎪⎪⎩

∑N
i=1

(
‖φ‖2C∗,τ (Rn\�) + ‖φ‖

n−6σ
n−2σ
C∗,τ (Rn\�)

)
|x − xi |ζ1−2σ , if 0 < d(x, �) < 1,

|x |−(n+2σ)
(
e
(n−6σ)γσ L

n−2σ ‖φ‖2C∗,τ (Rn\�) + ‖φ‖
n+2σ
n−2σ
C∗,τ (Rn\�)

)
, if d(x, �) ≥ 1.

As a matter of fact, by our construction, it holds:

(i) If dist(x, �) < 1, then

|Qσ (a j ,λ j )(φ)|

�
N∑
i=1

(
‖φ‖2C∗,τ (Rn\�)ū

− n+2σ
n−2σ

(x,L,a j ,λ j )
|x − xi |2ζ1 + ‖φ‖

n+2σ
n−2σ
C∗,τ (Rn\�)|x − xi |

(n+2σ)ζ1
n−2σ

)

�
N∑
i=1

[
‖φ‖2C∗,τ (Rn\�)|x − xi |ζ1−2γ |x − xi |ζ1+γσ

+‖φ‖
n+2σ
n−2σ
C∗,τ (Rn\�)|x − xi |ζ1−2σ |x − xi |

(n+2σ)ζ1
n−2σ −ζ1+2σ

]

�
N∑
i=1

(
‖φ‖2C∗,τ (Rn\�) + ‖φ‖

n+2σ
n−2σ
C∗,τ (Rn\�)

)
|x − xi |ζ1−2σ .

(ii) If dist(x, �) ≥ 1, then

|Qσ (a j ,λ j )(φ)|
� ‖φ‖2C∗,τ (Rn\�)ū

n−6σ
n−2σ
(x,L,a j ,λ j )

|x |−4γσ + ‖φ‖
n+2σ
n−2σ
C∗,τ (Rn\�)|x |−

n+2σ
n−2σ (n−2σ)

� |x |−(n+2σ)
(
e
(n−6σ)γσ L

n−2σ ‖φ‖2C∗,τ (Rn\�) + ‖φ‖
n+2σ
n−2σ
C∗,τ (Rn\�)

)
.

By combining the above two estimates, the proof of the first step is concluded.
Second, we can use the estimate above the handle the term (5.48).
Step 2: The estimate below holds

|Rσ (a j ,λ j )(φ)|

�

⎧⎪⎪⎨
⎪⎪⎩

∑N
i=1

(
‖φ‖2C∗,τ (Rn\�) + ‖φ‖

n+2σ
n−2σ
C∗,τ (Rn\�)

)
|x − xi |ζ1−τ , if 0 < d(x, �) < 1,

|x |−(n−2σ)
(
e
(n−6σ)γσ L

n−2σ ‖φ‖2C∗,τ (Rn\�) + ‖φ‖
n+2σ
n−2σ
C∗,τ (Rn\�)

)
, if d(x, �) ≥ 1.

Indeed we need to plug Step 1 into (5.48) and proceed as in Claim 2 of Lemma 5.18.
The proof follows by recalling the definition of weighted norms in (5.27) and (5.28).
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Claim 2: The map Bσ (a j ,λ j ) : BC → BC is a contraction.
Now we consider two functions φ1, φ2 ∈ BC . From the estimates in Step 1 combined
with the ones in Lemma 5.18, it is easy to see for L � 1 large, one has

∥∥Bσ (a j ,λ j )(φ1)− Bσ (a j ,λ j )(φ2)
∥∥C∗∗,τ (Rn\�) ≤ o(1)‖φ1 − φ2‖C∗,τ (Rn\�).

Therefore, one can be combined, and the proof of the claim is concluded.
Based on the last step, we can use the standard Banach contracting argument to

obtain the desired fixed point; this completes the proof of the proposition. ��

6 Estimates for the Projections on the Approximate Null Space

In this section, we provide some estimates related to the coefficient functions seen as
functions on the perturbation parameters, namely

{cij,�}(i, j,�)∈I∞ ⊂ C∞(�∞τ (R(n+1)N )), (6.1)

which were obtained in Sect. 5, where we recall I∞ := {1 . . . , N } × N × {0, . . . , n}
is the total index set. More precisely, we notice that from Proposition 5.21, whenever
(a j ,λ j ) ∈ Admσ (�) is a set of admissible parameters in Definition 5.5, one can find a
solution ū(x,L,a j ,λ j ) ∈ Apxσ (�) (or simply ū(x,L) ∈ Apxσ (�)) to perturbed equation
(Q′

2σ,a,λ) as in Definition 5.12. Here we recall

(x, L) ∈ Compσ (�) �→ (q, a0, R) ∈ Balσ (�) �→ (a j ,λ j ) ∈ Admσ (�)

�→ ū(x,L) ∈ Apxσ (�);

or, equivalently,
ū(x,L) = (ϒsol ◦ ϒper ◦ϒconf)(x, L)

is the explicit construction of approximate solutions. Thus, applying the Lyapunov–
Schmidt reduction, one can see that finding solutions to our original problem (Q′

2σ,�)
is equivalent to solving the following infinite-dimensional system:

β ij,�(a j ,λ j ) = 0 for (i, j, �) ∈ I∞. (S2σ,�)

Here the projection functions {β ij,�}(i, j,�)∈I∞ ⊂ C∞(�∞τ (R(n+1)N )) are given by

β ij,�(a j ,λ j ) =
∫
Rn

Nσ (x, L, a j ,λ j )Z
i
j,�(a j ,λ j )dx for (i, j, �) ∈ I∞, (6.2)

where we recall that

Nσ (x, L, a j ,λ j ) = ū(x,L,a j ,λ j ) − (−�)−σ ( fσ ◦ ū(x,L,a j ,λ j ))
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and the family of cokernels {Zi
j,�(a j ,λ j )}(i, j,�)∈I∞ ⊂ C0(Rn \ �) given by Defini-

tion 5.13. The idea is to find a set of configuration parameters such that its associated
sequence of perturbation parameters satisfies Syst. (S2σ,�). Then, the balancing con-
ditions (B1) and (B2) will allow us to perturb this special configuration to find a
true solution to our problem. In some sense, this is a discrete version of the pertur-
bation technique we applied to approximate Delaunay solutions by half-bubble tower
solutions.

6.1 Projection on the Normalized Approximate Kernels

Initially,we prove the decay of the functions defined in (6.2). For this, we shall consider
two cases. Namely, when the perturbation sequence of parameters is trivial, that is,
(a j ,λ j ) = (0, 1). Notice that indeed (0, 1) ∈ Admσ (�) is an admissible perturbation
sequence.

With this definition, we have the following estimate:

Lemma 6.1 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. Assume that (a j ,λ j ) = (0, 1) ∈
Admσ (�) is a set of trivial perturbations. Then, there exists two constants A2 >

0, A3 < 0 independent of L � 1 given by (A.2) and (A.3) such that the following
estimates hold

(i) If j = 0 and

(a) � = 0, then one has

β i0,0(0, 1)

= −cn,σqi

⎡
⎣A2

∑
i ′ 	=i

|xi ′ − xi |−(n−2σ)(Ri Ri ′)γσ qi ′ − qi

⎤
⎦ e−γσ L(1 + o(1))

+ O(e−γσ L(1+ξ));

(b) � ∈ {1, . . . , n}, then one has

βi0,�(0, 1) =cn,σ λ
i
0

⎡
⎣A3

∑
i ′ 	=i

(
xi ′ − xi

)
�

|xi ′ − xi |n−2σ+2 (R
i Ri ′ )γσ qi ′qi e

−γσ L

+O(e−γσ L(1+ξ))
]
.

(ii) If j ≥ 1 and

(a) � = 0, then one has

β ij,0(0, 1) = O
(
e−γσ (1+ξ)e−νt ij

)
;

(b) � ∈ {1, . . . , n}, then one has

β ij,�(0, 1) = O
(
e−γσ L(1+ξ)e−(1+ν)t ij

)
,
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where ν = min
{
ζ1 + γσ , γσ2

}
independent of L � 1 large and ξ > 0.

Proof Recall the definition of the cokernel Z
i
j,�(0, 1), we have

β ij,�(0, 1) =
∫
Rn

[(−�)σ ū(x,L,0,1) − ( fσ ◦ ū(x,L,0,1))]Zi
j,�(0, 1)dx .

Then The proof is the same as in [8, Lemma 4.1], and we omit the details. ��
It is not hard to check that only the perturbations of (a j ,λ j )will affect the numbers

β ij,�(a j ,λ j ), that is, we can get the same estimates for β i
∗
j,�(0, 1) for an admissible

sequence of parameters. Consequently, one can see that for any fixed i∗ ∈ {1, . . . , N },
the corresponding xi∗ ∈ � and Li∗ ∈ R+ are also fixed. Hence, if we consider the
approximate solution defined as

ū∗
(x,L,0,1) := ū(xi∗ ,Li∗ ,0,1), (6.3)

then the same estimates for β i∗j,�(0, 1) in the above lemma are still in force.
Next, we estimate the coefficients in (6.1) for a general admissible perturbation

sequence. So fixing i∗ ∈ {1, . . . , n}, we would like to study the estimates for the
variations of β i∗j,�(a j ,λ j ). Before, let us introduce some terminology. For any fixed

i∗ ∈ {1, . . . , N } and j∗ ∈ N, we let ei∗j∗ ∈ R
n and let r i∗j∗ ∈ R be such that

|ei∗j∗ | � (λ
i∗
j∗)

2 and |r i∗j∗ | � e−τ t i∗j∗ .

In this fashion, we define the variation of the perturbation sequence as

(a j (t),λ j (t)) =
{
(0, 1), if j 	= j∗
tei∗j∗ + Ri∗(1 + tr i∗j∗) if j = j∗.

Finally, we set

ū∗
(a j (t),λ j (t))(x) =

N∑
i=1

(
Û+,∗
(a j (t),λ j (t))

+ χi (x − tei∗j∗)φ
∗(a j (t),λ j (t))

)
(x), (6.4)

where
Û+,∗
(a j (t),λ j (t))

(x) =
∑
j∈N

Û∗
(xi∗ ,Li∗ ,a

i∗
j (t),λ

i∗
j (t))

(x)

with
Û∗
(xi∗ ,Li∗ ,a

i∗
j (t),λ

i∗
j (t))

(x) = U
Ri∗ (1+tr j∗

i∗ )
(x − te j∗i∗ ),

where 0 < τ � 1 is sufficiently small.
With this definition in hands, we have the following estimates:
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Lemma 6.2 Letσ ∈ (1,+∞), n > 2σ , and N ≥ 2. Assume that (a j ,λ j ) ∈ Admσ (�)
is an admissible configuration as inDefinition 5.5 and : R → R be defined by (A.4).

Then, there exists constants A1 < 0, A2 > 0, A3 < 0 independent of L � 1 given
by (A.1), (A.2), and (A.3) such that the following estimates hold

(i) If i = i∗, j∗ 	= j , and

(a) � = 0, then one has

∂t |t=0

∫
Rn

Nσ (ū
∗
(a j (t),λ j (t)))Z

i
j,�(a j ,λ j )dx

= −cn,σ ∂t

⎡
⎣A2

∑
i ′ 	=i

|xi ′ − xi |−(n−2σ)(λi0λ
i ′
0 )
γσ + (| ln λi0/λi1|)

ln λi1/λ
i
0

| ln λi1/λi0|

⎤
⎦

+ O(e−γσ L(1+ξ));

(b) � ∈ {1, . . . , n}, then one has

∂t |t=0

∫
Rn

Nσ (ū
∗
(a j (t),λ j (t))

)Zi
j,�(a j ,λ j )dx

= cn,σ λ
i
0∂t

⎡
⎣A3

∑
i ′ 	=i

xi ′ − xi
|xi ′ − xi |n−2σ+2 (λ

i
0λ

i ′
0 )
γσ + A1

min{λi0/λi1, λi1/λi0}γσ
|max{λij ′ , λij∗ }|2

te�

⎤
⎦

+ O(λi0e−γσ L(1+ξ));

(ii) If i = i∗, j∗ = j ≥ 1

(a) � = 0, then one has

∂t |t=0

∫
Rn

Nσ (ū
∗
(a j (t),λ j (t)))Z

i
j,�(a j ,λ j )dx

= −cn,σ ∂t

[
 (| ln λi0/λi1|)

ln λi1/λ
i
0

| ln λi1/λi0|

]
+ O(e−γσ L(1+ξ));

(b) � ∈ {1, . . . , n}, then one has

∂t |t=0

∫
Rn

Nσ (ū
∗
(a j (t),λ j (t)))Z

i
j,�(a j ,λ j )dx

= cn,σ λ
i
j∂t

[
A1

min{λi0/λi1, λi1/λi0}γσ
|max{λij ′, λij∗}|2

te�

]
+ O(λij e−γσ L(1+ξ)e−τ t j∗ );

for some ν > 0 independent of 0 < τ � 1 small, L � 1 large, and ξ > 0.

Proof The proof is the same as in [8, Lemma 4.3]; thus, we omit the details. ��
Next, we study the case of a general sequence of perturbation. In this proof, it will

be fundamental to use the fact that our sequence of parameters is admissible.
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Lemma 6.3 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2 and (a j ,λ j ) ∈ Admσ (�) be
an admissible configuration as in Definition 5.5. There exists constants A1, A2 >

0, A3 < 0 independent of L � 1 given by (A.1), (A.2), and (A.3) such that the
following estimates hold

(i) If j = 0 and

(a) � = 0, then one has

β i0,0(a j ,λ j ) = −cn,σqi

⎡
⎣A2

∑
i ′ 	=i

|xi ′ − xi |−(n−2σ)(Ri
0R

i ′
0 )
γσ qi ′

−
(
Ri
1

Ri
0

)γσ
qi

]
e−γσ L(1 + o(1))+ O(e−γσ L(1+ξ)).

(b) � ∈ {1, . . . , n}, then one has

β i0,�(a j ,λ j ) = cn,σ λ
i
0

⎡
⎣A3

∑
i ′ 	=i

(xi ′ − xi )�
|xi ′ − xi |n−2σ+2 (R

i
0R

i ′
0 )
γσ qi ′

+A0

(
Ri
1

Ri
0

)γσ
ai0 − ai1(
λi0

)2 qi

]
qi e

−γσ L

+ O(λi0e−γσ L(1+ξ)) for � ∈ {1, . . . , n}.

(ii) If j ≥ 1 and

(a) � = 0, then one has

β ij,0(a j ,λ j ) = O
(
e−γσ L(1+ξ)e−νt ij + e−γσ L(1+ξ)e−τ t ij−1

)
.

(b) � ∈ {1, . . . , n}, then one has

β ij,�(a j ,λ j ) = O
(
λij e

−γσ L(1+ξ)e−νt ij + λij e−γσ Le−τ t ij−1

)
for � ∈ {1, . . . , n},

where ν = min
{
ζ1 + γσ , γσ2

}
independent of L � 1 large and ξ > 0.

Proof For the same reason as inLemma6.1, The proof is the same as in [8, Lemma4.4],
and we omit the details. ��

6.2 Derivative of the Projection on the Normalized Approximate Kernels

Here we estimate the variations of the projection functions in (6.2) with respect to the
perturbation parameters. As before, for any fixed i∗ ∈ {1, . . . , N } one has xi∗ ∈ �
and Li∗ ∈ R+, we denote by u∗

(x,L,0,1) ∈ C2σ+α(Rn \�) an approximate solution to
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(Q2σ,�). Using Proposition 5.21, we know that by performing the Lyapunov–Schmidt
reduction method, there exists an error function

φ∗
(a j ,λ j )

:= φ(xi∗ ,Li∗ a j ,λ j ) ∈ C∗(Rn \�). (6.5)

In this direction, it also makes sense to define

N ∗
σ (a j ,λ j )(φ) := Nσ (u

∗
(a j ,λ j )

+φ) = (u∗
(a j ,λ j )

+φ)−(−�)−σ [ fσ ◦(u∗
(a j ,λ j )

+φ)].
(6.6)

Furthermore, let us introduce the linearized operator applied to this approximate solu-
tionL ∗

σ (a j ,λ j ) : Cα(Rn \�) → C2σ+α(Rn \�) given by

L ∗
σ (a j ,λ j )(φ) = φ − (−�)−σ ( f ′

σ ◦ ū∗
(a j ,λ j )

)φ.

From now on, it will be convenient to denote the new coordinate system as

ξ ij,0 = r ij and for ξ ij,� = aij,� for � ∈ {1, . . . , n}. (6.7)

We study the variations with respect to (6.7).
We now need to study the derivative of ci∗j,�(a j ,λ j ) with respect to the variations

of the parameters in (6.7). Initially, we consider the most straightforward model case
when there is only one point singularity at � = {0} and ū(x,L) = ū(0,L j ) ∈ C2σ (Rn \
{0}) is the associated approximate solution, i.e., the Delaunay solution from (5.8). We
recall that this solution satisfies (Q′

2σ,a,λ) with φ(0,L j ) ≡ 0 and vanishing right-hand
side. We define

β
i∗
j,�(a j ,λ j ) :=

∫
Rn

N ∗
σ (a j ,λ j )Z

∗
j,�(a j ,λ j )dx . (6.8)

In this setting, one can still perform the reduction in Proposition 5.21 to find a perturbed
solution in the form u = ū(0,L j ) + φ of the following equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N ∗
σ (a j ,λ j )(φ) =

∑
j∈N

n∑
�=0

ci∗j,�(a j ,λ j )Z
i∗
j,�(a j ,λ j ) in R

n \�,
∫
Rn
φZ

i∗
j,�(a j ,λ j )dx = 0 for (�, j) ∈ {0, . . . , n} × N.

(6.9)

In conclusion, for any fixed i∗ ∈ {1, . . . , N }. Let us denote by ū∗
(a j ,λ j )

, φ∗
(a j ,λ j )

the
pair satisfying the infinite-dimensional reduced equation (6.9). Notice that the reason
to start with the trivial configuration u(0,L j ) ∈ C2σ (Rn \ {0}) is that we will have the
identification ∂ξ ij,�

β ij,� = lim j→+∞ ∂ξ j,�β
i∗
j,�, where we set ξ j,� := ξ

i∗
j,�.

Let us begin with the lemma below:

Lemma 6.4 Letσ ∈ (1,+∞), n > 2σ , and N ≥ 2. Assume that (a j ,λ j ) ∈ Admσ (�)
is an admissible configuration as in Definition 5.5 with ū(x,L,a j ,λ j ) ∈ Apxσ (�) their
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associated approximate solution as in Definition 5.12. Then, for L � 1 is sufficiently
large, one has

|∂ξ ij,�φ(x,L,a j ,λ j )(x)|

�
{
e−γσ L(1+ξ)|x − xi |−γσ e−ν|t i−t ij |, if � = 0,

(λij )
−1e−γσ L(1+ξ)|x − xi |−γσ e−σ |t i−t ij |, if � ∈ {1 . . . , n}, in B1(xi ),

where ν = min
{
ζ1 + γσ , γσ2

}
independent of L � 1 large and ξ > 0.

Proof The proof is the same as in [8, Lemma 5.1]; thus, we omit the details. ��
We remark that an estimate similar to this will hold for the pair ū∗

(a j ,λ j )
, φ∗
(a j ,λ j )

.
The last lemma shows the suitable weighted Hölder spaces for this setting.

Definition 6.5 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. For any α ∈ (0, 1), let us
introduce two new weighted norms

‖φ‖C∗,ν (Rn\�) = ‖|x − xi |γσ eν|t i−t ij |φ‖C2σ+α(B1(xi ))

+
∑
i ′ 	=i

‖|x − xi ′ |γσ φ‖C2σ+α(B1(xi ′ ))

+ ‖|x |n−2σ φ‖C2σ+α(Rn\∪i ′ B1(xi ′ ))

and

‖φ‖C∗∗,ν (Rn\�) = ‖|x − xi |γ ′
σ eν|t

i−t ij |φ‖C2σ+α(B1(xi ))

+
∑
i ′ 	=i

‖|x − xi ′ |γ ′
σ φ‖C2σ+α(B1(xi ′ ))

+ ‖|x |n+2σ φ‖C2σ+α(Rn\∪i ′ B1(xi ′ ))

where we recall that t i = − ln |x−xi | and 0 < ν � 1 is a small positive constant to be
determined later. We also denote by C∗,ν(Rn \�) and C∗∗,ν(Rn \�) the corresponding
weighted Hölder spaces.

In the light of Lemma 6.2, one can prove the estimate below

Lemma 6.6 Letσ ∈ (1,+∞), n > 2σ , and N ≥ 2. Assume that (a j ,λ j ) ∈ Admσ (�)
is an admissible configuration as inDefinition 5.5 and : R → R be defined as (A.4).

Then, there exists constants A1 < 0, A2 > 0, A3 < 0 independent of L � 1 given
by (A.1), (A.2), and (A.3) and ξ > 0 such that the following estimates hold:

(a) If � = 0, then one has

∂r jβ j,0(a j ,λ j )
∣∣
(a j ,λ j )=(0,1) = −2cn,σ 

′(L)+ O(e−γσ L(1+ξ)),

∂r jβ j−1,0(a j ,λ j )
∣∣
(a j ,λ j )=(0,1) = cn,σ 

′(L)+ O(e−γσ L(1+ξ)),
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∂r jβ j+1,0(a j ,λ j )
∣∣
(a j ,λ j )=(0,1) = cn,σ 

′(L)+ O(e−γσ L(1+ξ)),

∂r jβ j∗,0(a j ,λ j )
∣∣
(a j ,λ j )=(0,1) = O(e−γσ (1+ξ)e−σ |t j∗−t j |) for | j∗ − j | ≥ 2.

(b) If � ∈ {1, . . . , n}, then one has

∂a j,�β
i∗
j,�(a j ,λ j )

∣∣∣
(a j ,λ j )=(0,1)

= cn,σ λ j

∑
j ′ 	= j

min{λ j ′/λ j , λ j/λ j ′ }γσ
max{λ2j ′, λ2j }

+ O(e−γσ L(1+ξ)) if j 	= j∗

and

∂a j,�β
i∗
j,�(a j ,λ j )

∣∣∣
(a j ,λ j )=(0,1)

= cn,σ λ j
min{λ j∗/λ j , λ j/λ j∗}γσ

max{λ2j∗, λ2j }
+ O(e−γσ L(1+ξ)).

In addition, it follows

∂ξ j,�′β
i∗
j∗,�(a j ,λ j )

∣∣∣
(a j ,λ j )=(0,1)

= 0 if � 	= �′.

Proof The proof is the same as in [8, Lemma 5.2]; thus, we omit the details. ��
The strategy to proof the desired estimates for the case of a generally admissible

perturbation sequence (a j ,λ j ) ∈ Admσ (�) is first to study the trivial case (a j ,λ j ) =
(0, 1) and then perform a by-now standard perturbation of parameters method.

For simplicity, we only state the latter case:

Lemma 6.7 Letσ ∈ (1,+∞), n > 2σ , and N ≥ 2. Assume that (a j ,λ j ) ∈ Admσ (�)
is an admissible configuration as in Definition 5.5 with ū(x,L,a j ,λ j ) ∈ Apxσ (�) their
associated approximate solution as in Definition 5.12. Then, for any i∗ ∈ {1, . . . , N }
fixed and j ∈ N, we have the following estimate:

∥∥∥∂ξ ij,�
(
φ(x,L,a j ,λ j ) − φ∗

(a j ,λ j )

)∥∥∥
C∗,ν (Rn\�)

�
{
e−γσ L(1+ξ)e−νt ij for � = 0

(λij )
−1e−γσ L(1+ξ)e−νt ij for � ∈ {1, . . . , n}.

In particular, it follows

∣∣∣∂ξ ij,�
(
β ij ′,�′(a j ,λ j )− β j ′,�′(a j ,λ j )

)∣∣∣

�

⎧⎨
⎩
e−γσ L(1+ξ)e−νt ij e−ν|t ij−t i

j ′ | for � = 0

(λij )
−1e−γσ (1+ξ)e−νt ij e−ν|t ij−t i

j ′ | for � ∈ {1, . . . , n},
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where 0 < τ � ν small enough with ν = min
{
ζ1 + γσ , γσ2

}
independent of L � 1

large and ξ > 0.

Proof The proof is the same as in [8, Lemmas 5.5 and 5.6]; thus, we omit the details.
��

7 Gluing Technique

In this section, we prove our main results. We keep the notation and assumptions in
the previous sections. The proof here is similar in spirit to the one in [8, Theorem 1].
Nevertheless, we include it here for the sake of completeness.

7.1 Infinite-Dimensional Toda-System

We apply a fixed-point strategy in a weighted space of sequences. Before we start, we
define some notation.

Definition 7.1 For any τ > 0, let us introduce the following weighted norm:

|(a j ,λ j )|∞,τ = sup
j∈N

e(2 j+1)τ |(a j ,λ j )|∞.

We also consider the associated Banach space given by

�∞τ (R(n+1)N ) =
{
(a j ,λ j ) ∈ �∞(R(n+1)N ) : |(a j ,λ j )|∞,τ < +∞

}
.

For any (ā j , r̄ j ) ∈ �∞τ (R(n+2)N ), we define the interaction operator

T(ā j ,r̄ j ) : �∞τ (R(n+1)N ) → �∞τ (R(n+1)N )

given by T(ā j ,r̄ j ) = (T(ā j ),T(r̄ j )). Here

T(ā j )(ã j ) = T(ā j ) ã
t
j and T(r̄ j )(r̃ j ) = T(r̄) j r̃

t
j ,

where T(ā j ) = (T 1
(ā j )
, . . . ,T N

(ā j )
) and T(r̄) j = (T 1

(r̄) j
, . . . ,T N

(r̄) j
) with

T i
(ā j )

=

⎛
⎜⎜⎜⎜⎝

−1 1 + e−2Li −e−2Li 0 · · · · · · 0

0 −1 1 + e−2Li −e−2Li 0
. . . 0

0 0 −1 1 + e−2Li −e−2Li 0
...

· · · · · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎠ (7.1)
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and

T i
(r̄ j )

=

⎛
⎜⎜⎜⎜⎝

−1 2 −1 0 · · · · · · 0

0 −1 2 −1 0
. . . 0

0 0 −1 2 −1 0
...

· · · · · · · · · · · · · · · · · · . . .

⎞
⎟⎟⎟⎟⎠ (7.2)

being infinite-dimensional matrix for all i ∈ {1, . . . , N }.
It is straightforward to see that these infinite-dimensional matrices are not invertible

since they have a trivial kernel. However, they are indeed invertible in some suitably
weighted norms defined above. In this direction, we have the following surjectiveness
result for the interaction operator.

Lemma 7.2 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. For any τ > 0, the interac-
tion operator T(ā j ,r̄ j ) : �∞τ (R(n+1)N ) → �∞τ (R(n+1)N ) has an inverse, denoted by

T −1
(ā j ,r̄ j )

: �∞τ (R(n+1)N ) → �∞τ (R(n+1)N ). Moreover, one has

sup
|(a j ,r j )|∞,τ=1

‖T −1
(ā j ,r̄ j )

(a j , r j )‖ � e−2τ . (7.3)

Proof Theproof is given bydirectly constructing the inverse operator. First,weobserve
that T −1

(r̄) j
: �∞τ (RN ) → �∞τ (RN ) can be found in [44, Lemma 7.3].

We are left to provide the inverse for T(ā j ) : �∞τ (RnN ) → �∞τ (RnN ). Indeed, for
any b ∈ �∞τ (RnN ), we have to solveT(ā j )(ã j ) = b j . This is accomplished by defining

T −1
(ā) j

: �∞τ (RnN ) → �∞τ (RnN ) as

ã j =
∞∑

k= j+1

⎛
⎝k− j−1∑

s=0

e−2Li s

⎞
⎠ b j := T −1

(ā) j
.

Whence, by performing the same routine computations, one can quickly check that
ã j ∈ �∞τ (RnN ) satisfies the required conditions and that the operator T −1

(ā) j
is a com-

plete inverse of T(ā) j .
In addition, one has

|ã j |∞ � |b̃ j |∞,τ
∞∑

k= j+1

⎛
⎝k− j−1∑

s=0

e−2Li s

⎞
⎠ e−(2k+1)τ � e−(2 j+3)τ |b̃ j |∞,τ ,

which implies the estimate (7.3). The lemma is proved. ��
Lemma 7.3 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. Assume that (R, â0, q) ∈
Balσ (�) is a balanced configuration. Then, for L � 1 sufficiently large, there exists
0 < τ < min{ξ, ν} and an admissible perturbation sequence (a j ,λ j ) ∈ Admσ (�) ⊂
�∞τ (R(n+1)N ) such that β ij,�(a j ,λ j ) = 0 for (i, j, �) ∈ I∞, that is, (a j ,λ j ) ∈
Admσ (�) solves the infinite-dimensional system (S2σ,�).
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Proof Indeed, for any i ∈ {1, . . . , N }, let us define the operator G i : �∞τ (R(n+1)N ) →
�∞τ (R(n+1)N ) given by G i = (G i

0 , . . . ,G
i
n ), where G

i
� : �∞τ (RN ) → �∞τ (RN ) for each

� ∈ {0, . . . , n}. More precisely, we have

G 0
0 (a j ,λ j ) = 1

F(Li )
[β ij,0(a j ,λ j )− β ij,0(0, 1)]eti − T(r̄ j )(r̃ j )

and

G �0 (a j ,λ j ) = eγσ Li

λij

[β ij,0(a j ,λ j )− β ij,0(0, 1)]eti − T(ā j )(ã j ) for � ∈ {1, . . . , n},

where ei ∈ �∞(R(n+1)N ) is the i-th vector in its standard Schauder basis, which we
denote by {ei }i∈N ⊂ �∞(R(n+1)N ).

One can easily see that β�i, j (a j ,λ j ) = 0 for j ≥ 1 if

(ãij )
t = −(T i

(ā j )
)−1

(
−eγσ Li

λij

β ij,0(0, 1)e
t
i + G i

� (a j ,λ j )

)
(7.4)

and

(r ij )
t = −(T i

(r j ))
−1
(

− 1

F(Li )
β ij,0(0, 1)e

t
i + G i

0 (a j ,λ j )

)
. (7.5)

Next, we show that the terms on the right-hand sides of (7.4) and (7.5) are contractions
in an appropriate sense. First, by Lemma 6.1, one has

∣∣∣β ij,�(0, 1)
∣∣∣ �

{
e−γσ L1(1+ξ)e−νt ij , if � = 0,

λij e
−γσ L1(1+ξ)e−νt ij , if � ≥ 1,

for j ≥ 1.

Also, let us denote by the projection on the j-th component it follows

(Ĝ�, j + G̃�, j )(a j ,λ j ) := � j

(
eγσ Li

λij

[β ij,0(a j ,λ j )− β ij,0(0, 1)]eti − T(ā j )(ã j )

)
,

(7.6)
where

Ĝ�, j (a j ,λ j ) =
∫ 1

0

[
eγσ Li

λij

∂tβ
i
j,�(t(ã

i
j , r

i
j )
t)− A

i

](
(āij , r

i
j )
t
)
dt

and
G̃�, j (a j ,λ j ) = A

i − T i
(ā j )
(ãij )
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with

A
i
j

(
(ãij , r

i
j )
t
)

=
∑
j ′∈N

eγσ L

λij

∂āi
j ′
β
i∗
j,�(a j ,λ j ) ·

[
āij ′
]
,

whereβ i∗j,�(a j ,λ j ) ∈ R is defined as (6.8) and āij ∈ R
nN corresponds to the translation

perturbation of the j-th bubble in theDelaunay solution fromLemma6.6. Furthermore,
by definition, one has

T(ā j )((ā
i
j )
t) = T(ā j )((ã

i
j )
t).

Now we have to estimate the terms on the left-hand side of (7.6). Indeed, we begin
by estimating the first term. As a consequence of Lemma 6.6 for � ∈ {1, . . . , n}, one
finds

∣∣Ĝ�, j (a j ,λ j )
∣∣ �

∑
j ′∈N

eγσ L

λij

|∂āi
j ′
(β ij,� − β i∗j,�)(a j ,λ j )|

∣∣∣āij ′
∣∣∣+ O

(
e−γσ Li ξe−min{ν,τ }t ij

)

� e−γσ ξ ∑
j ′∈N

e
−νt i ′

j ′ e
−ν|t ij−t i

′
j ′ ||āij ′ | + O

(
e− (n−2γ )Li

2 ξ e−min{ν,τ }t ij
)

�
(
e−γσ Lξ e−min{ν,τ }t ij

)
.

In addition, we apply Lemma 6.6 to estimate the second term; this gives us

∣∣G̃�, j (a j ,λ j )
∣∣ � e−γσ Li ξ

⎡
⎣e−νLi

(
|ãij−1| + |ãij+1|

)
+

∑
j ′ 	= j±1

e
−ν|t i

j ′−t ij ||ãij ′ |
⎤
⎦ .

(7.7)

Therefore, by combining these two estimates, it follows that for 0 < τ < ν � 1, one
has

∥∥∥G i
� (a j ,λ j )

∥∥∥
�∞τi (R

(n+1)N )
� eτ Le−γσ Li ξ‖(ãij )t‖�∞τi (RnN )+O(e−γσ Li ξ ) for � ∈ {1, . . . , n}

and ∥∥∥G i
0 (a j ,λ j )

∥∥∥
�τi (R

(n+1)N )
� eτ Le−γσ Li ξ‖(r ij )t‖�τi (RN ) + O(e−γσ Li ξ ),

where τi = τ Li
2 . Next, up to some error, Eq. (7.4) and (7.5) can be reformulated as

(ãij )
t = (T i

(ā) j
)−1

[
eτ Le−γσ Li ξ‖(ãij )t‖�∞τi (RnN ) + O(e−γσ Li ξ )

]
=: G (a j )((ã

i
j )
t)

and

(r ij )
t = (T i

(r) j )
−1
[
eτ Le−γσ Li ξ‖(r ij )t‖�∞τi (RN ) + O(e−γσ Li ξ )

]
=: G (r j )((r ij )t),
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where the right-hand sides of the above equations are estimated in �∞τi (R
(n+1)N ) norm.

At last, for 0 < τ < ξ � 1, let us consider the set

B∗
L :=

{
(ãij , r

i
j )
t ∈ �∞τi (R(n+1)N ) : ‖(ãij , r ij )‖∞, τ Li2

� e−τ L} .
Notice that G(ā j ,r j ) : B∗

L → �∞τi (R
(n+1)N ) given by G(ā j ,r j ) = (G(ā j ),G(r) j ) maps

B∗
L into itself, and it is a contraction. Therefore, one can invoke Banach’s contraction

principle to find a fixed point in the set B∗
L , which solves (S2σ,�). The proof is then

finished. ��
Next, we have an invertibility lemma based on the balancing conditions from Def-

inition 5.5.

Lemma 7.4 Let σ ∈ (1,+∞), n > 2σ , and N ≥ 2. Assume that (qb, ab0, R
b) ∈

Balσ (�) is a balanced configuration. Let us consider the operator F : R
2N → R

N

is given by
F(q, R) = A2

∑
i ′ 	=i

|xi ′ − xi |−(n−2σ)(Ri Ri ′)γσ qi ′ − qi .

Then, the linearized operator around (qb, Rb), denoted by dF(qb,Rb) : R
2N → R

N ,
is invertible.

Proof Notice that the linearized operator dF(q, R)|(qb,Rb) : R
2N → R

N has the
following expression:

dF(q,R) = (qi ′ , Ri ′) =: (dF̂q, dF̂R),

where qi ′ ∈ R
N+ and Ri ′ ∈ R

N+ are defined, respectively, as

qi ′ = (qii ′) and Ri ′ = (Rii ′)

with

qii ′ =
{

−1, if i = i ′

A2|xi − xi
′ |−(n−2σ)(Ri,bRi ′,b)γσ , if i 	= i ′

and

Rii ′ =
{
γσ (Ri,b)−1∑

i ′ 	=i A2|xi ′ − xi |−(n−2σ)(Ri,bRi ′,b)γσ qbi , if i = i ′

γσ (Ri,b)−1A2|xi ′ − xi |−(n−2σ)(Ri,bRi ′,b)γσ qbi ′ if i 	= i ′.

Next, from the balancing condition (B1), it follows F(qb, Rb) = 0. Also, one can
see that dF̂q is symmetric and has only a one-dimensional kernel. More precisely, we
have Ker(dF̂q) = span{qb}.

Finally, the balancing condition (B1) also implies dF̂q(R) = γσ q. From this, it is
easy to conclude that the operator dF(qb,Rb) is surjective. ��
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7.2 Proof of theMain Result

Now we can provide proof for our main result in this paper.

Proof of Theorem 2 By Lemma 7.3, we are reduced to find (R, â0, q) ∈ R
(n+2)N such

that β i0,�(a j ,λ j ) = 0 for all j ∈ N, where (a j ,λ j ) = ϒper(R, â0, q).
The rest of the proof will be divided into two main parts: the zero-mode and

the linear-mode case. First, if j = 0, using Lemma 6.3 (i), one has that equation
β i0,0(a j ,λ j ) = 0 is reduced to

− cn,σqi

⎡
⎣A2

∑
i ′ 	=i

|xi ′ − xi |−(n−2σ)(Ri
0R

i ′
0 )
γσ qi ′ −

(
Ri
1

Ri
0

)γσ
qi

⎤
⎦ e−γσ L(1 + o(1))

+ O(e−γσ L(1+ξ)) = 0.

Furthermore, recall that since Ri
0 = Ri (1 + r i0), one can use that r i0 ∈ R+ satisfies

|r i0| � e−2τ , to reformulate the equation above as

F1(R, â0, q) = o(1). (7.8)

HereF1 : R
2N → R

(n+2)N is given by

F1(R, â0, q) := A2

∑
i ′ 	=i

|xi ′ − xi |−(n−2σ)(Ri Ri ′)γσ qi ′ − qi . (7.9)

Second, if � ∈ {1, . . . , n}, using Lemma 6.3 (ii), it is not hard to check that the system
β i0,�(a j ,λ j ) = 0 are reduced to

cn,σ λ
i
0

⎡
⎣A3

∑
i ′ 	=i

(xi ′ − xi )�
|xi ′ − pi |n−2σ+2 (R

i
0R

i ′
0 )
γσ qi ′ + A0

(
Ri
1

Ri
0

)γσ
ai0 − ai1(
λi0

)2 qi

⎤
⎦ qi e

−γσ L

+ O(λi0e−γσ L(1+ξ)) = 0.

In addition, since
aij = (λij )

2āij and āij = âi0 + ãij ,

one can use that ãij ∈ R
nN also has the decay |ãij | � e−2τ , the above equation can be

rewritten as
F2(R, â0, q) = o(1), (7.10)

where F2 : R
nN → R

(n+2)N is given by

F2(R, â0, q) := A3

∑
i ′ 	=i

(xi ′ − xi )�
|xi ′ − xi |n−2σ+2 (R

i Ri ′)γσ qi ′ + A0â
i
0qi . (7.11)
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To conclude we need to choose suitable (R, â0, q) ∈ R
(n+2)N such that equations

(7.8) and (7.10) are solvable. Notice that the solvability of (7.8) and (7.10) depends
on the following invertibility property of the linearized operator of F : R

(n+2)N →
R
(n+2)N given by F = (F1,F2) around (R, â0, q). Moreover, from Lemma 7.4,

this accomplished since (R, â0, q) ∈ Balσ (�), that is, it satisfies (B1) and (B2).
More precisely, the balancing condition (B1), one can easily perturb (Rb, qb) to find
(R, q) solving (7.8). Next, using the second balancing condition (7.10), one can find
â0 ∈ R

nN around âb0 ∈ R
nN which solves (7.10).

In conclusion, we use the maximum principle in Lemma 4.9 to show that u > 0 to
conclude the proof of the main theorem. ��
Acknowledgements This paper was finished when the first-named author held a Post-doctoral position at
the University of British Columbia, whose hospitality he would like to acknowledge.

Appendix A: Estimates on the Bubble-Towers Interactions

In this appendix, we quote some important integrals in our proof. The following
expressions may be found in [8, Appendix 7] for σ ∈ R+. Let λ1, λ2λ3 > 0 and
x1, x2 ∈ R

n with x 	= 0, we define

U1 := U0,λ1 , U2 := U0,λ2 , and U3 := Ux,λ3 ,

where wx0,λ is given by (4.4). We also recall

γσ := n − 2σ

2
and γ ′

σ := n + 2σ

2

to be the Fowler rescaling exponent and its Lebesgue conjugate, respectively.
In what follows, we use the constants below:

A1 = (n + 2σ)(n − 2σ)

n

∫
Rn

(
|x |2γσ

(
1 + |x |2

)γ ′
σ + 1

)−1

dx > 0, (A.1)

A2 = n + 2σ

2

∫
Rn
(|x |2 − 1)

(
1 + |x |2

)−γσ−1
dx > 0, (A.2)

and

A3 = − (n − 2σ)2

n

∫
Rn

|x |2
(
1 + |x |2

)−γσ−1
dx < 0. (A.3)

Lemma A.1 For any λ1, λ2 > 0. It holds

∫
Rn

f ′
σ (U1)U2∂λ1U1dx = 1

λ1
 

(∣∣∣∣log λ2λ1
∣∣∣∣
) log λ2

λ1∣∣∣log λ2λ1
∣∣∣ ,

where
 (�) = e−γσ �(1 + o(1)) as � → +∞

123



6 Page 72 of 77 J. H. Andrade et al.

with

 (�) :=
∫
R

f ′
σ (vsph(t))vsph(t + �)v′(t)dt . (A.4)

Proof See [8, Lemma 7.1]. ��
Lemma A.2 If λ3 = O(λ1), then the following estimates hold

∫
Rn

f ′
σ (U1)U3∂λ1U1dx = A2|x2|2σ−n (λ1λ3)

γσ

λ1

(
1 + O (λ1)2

)

and

∫
Rn

f ′
σ (U1)U3∂x�U1dx = A3x�|x |2σ−n−2 (λ1λ3)

γσ
(
1 + O (λ21)) for � ∈ {0, . . . , n}.

Proof See [8, Lemma 7.2]. ��
Lemma A.3 Let λ1, λ2 > 0 and a ∈ R

n. If |a| ≤ max
{
λ21, λ

2
2

} � 1 and

min
{
λ1
λ2
, λ2
λ1

}
� 1, then the following estimates holds

∫
Rn
(∂aU

γσ ′
a,λ1
)U γσ0,λ2dx = −A0cλ1,λ2Cλ1,λ2 + cλ1,λ2O

(
C2
λ1,λ2

+ c2λ1,λ2C
2
λ1,λ2

)
,

(A.5)

where

cλ1,λ2 = min

{(
λ1

λ2

)γσ
,

(
λ2

λ1

)γσ}
and Cλ1,λ2 = a

max
{
λ21, λ

2
2

} .

Proof See [8, Lemma 7.3]. ��

Appendix B: Nondegeneracy of the Bubble Solution

In this section, we add the proof of the nondegeneracy of the spherical solution.

Proof of Lemma 4.6 Let us start with φ ∈ Hσ (Rn). Using the statement in [42, Lemma
5.1], it suffices to know that φ ∈ L∞ (Rn). We will divide the proof of this fact into
three cases, which we describe as follows:
Case 1: n > 6σ .

Indeed, notice that, from (4.14) since f ′
σ (usph) ∈ L∞(Rn), one can find a large

constant C � 1 depending only on n, σ such that

|φ(x)| ≤
∫
Rn

C |x − y|2σ−n
( |φ(y)|
1 + |y|4σ + 1

1 + |y|n−2σ

)
dy for x ∈ R

n . (B.1)
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Also, by partitioning the Euclidean space as R
n = Bd(0)∪ Bd(x)∪ (Bd(0)∪ Bd(x))c

with d := |x |/2 ≥ 1, and integrating on each subpart, we obtain

∫
Rn

|x − y|2σ−n

1 + |y|n−2σ dy � 1

|x |n−4σ for all x ∈ R
n . (B.2)

Furthermore, by substituting the last inequality into (B.1), one has

|φ(x)| ≤ C

[∫
Rn

|x − y|2σ−n

1 + |y|4σ |φ(x)|dy + 1

1 + |x |n−4σ

]
for x ∈ R

n . (B.3)

Next, since n > 6σ , one has that [p0, p∗) 	= ∅, where p0 = 2n
n−2σ and p∗ = n

2σ ,
which allows us to use the Hardy–Littlewood–Sobolev inequality to get

‖φ‖L p1 (Rn) �
∥∥∥∥ |φ(x)|
1 + |x |4σ ∗ |x |2σ−n

∥∥∥∥
L p1 (Rn)

�
∥∥∥∥ |φ(x)|
1 + |x |4σ

∥∥∥∥
Lq1 (Rn)

� ‖φ‖L p0 (Rn)

∥∥∥∥ 1

1 + |x |4σ
∥∥∥∥
Lq0 (Rn)

, (B.4)

for any p ∈ [p0, p∗) and p2 = np0
n−2σ p0

.
In what follows, we are based on the estimate (B.4) to run the bootstrap argument

below and obtain the desired L∞-estimate. First, notice that from (B.4), we have
φ ∈ L p1(Rn), and so φ ∈ L p1(Rn) for all p ∈ [p0, p1]. Second, we check whether
p1 ≥ p∗ or not. In the affirmative case, we apply (B.4) with p = p∗ −ε for 0 < ε � 1
small enough to obtain that φ ∈ L p1(Rn) for all p ∈ [p0,+∞). In the negative case,
we use (B.4) with p = p1, which gives us that φ ∈ L p2(Rn) for all p ∈ [p0, p2],
where p2 = np1

n−2σ p1
. Third, we repeat the same process for this new exponent.

More precisely, it is not hard to check that the bootstrap sequence {p�}�∈N ⊂
[p0,+∞) satisfies

p�+1 =
(
1 + 4σ

n − 6σ

)
p� for all � ∈ N.

Hence, lim�→+∞ p� = +∞, which shows that the bootstrap technique terminates in
a finite step.

Now, let us fix some p � 1 large enough. using the same strategy as in (B.2), we
find

∫
Rn

|x − y|2σ−n |φ(y)|
1 + |y|4σ dy �

(∫
Rn

|x − y|(2σ−n)p′

1 + |y|4σ p′
0

dy

) 1
p′

‖φ‖L p(Rn)

� 1

1 + |x |
n(p′−1)

p′ +2σ
� 1 for all x ∈ R

n, (B.5)
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where p′ = p−1
p is the conjugate Lebesgue exponent of p. Finally, from the last

estimate combined with (B.3), we deduce that φ ∈ L∞(Rn); this finishes the first
case.
Case 2: n = 6σ .

Here we observe that since for n = 6σ , it holds that p0 = p∗ = 3, one has
[3, 3) = ∅; thus (B.4) does not make sense for this case. However, we still have (B.3).
In addition, since by Sobolev embedding, we know φ ∈ Hσ (Rn) ↪→ L3(Rn), which,
as before, yields

‖φ‖L p1 (Rn) �
∥∥∥∥ |φ(x)|
1 + |x |4σ ∗ 1

|x |4σ
∥∥∥∥
L p1 (Rn)

+
∥∥∥∥ 1

1 + |x |2σ
∥∥∥∥
L p1 (Rn)

�
∥∥∥∥ |φ(x)|
1 + |x |4σ

∥∥∥∥
Lq1 (Rn)

+ 1

� ‖φ‖L3(Rn)

∥∥∥∥ 1

1 + |x |4σ
∥∥∥∥
Lq0 (Rn)

+ 1,

where q0 ∈ (3,+∞), ζ1 = 3q0
q0+3 ∈ ( 32 , 3), and p1 = 3q1

3−q1
∈ (3,+∞).

This means that φ ∈ L p(Rn) for all p ≥ 3. More precisely, by taking q0 � 1, one
can make p � 1 large enough. Finally, by the same argument in the last case, we have
φ ∈ L∞(Rn), which concludes the argument for the second case.
Case 3: 2σ < n < 6σ .

In this case, using the Hardy–Littlewood–Sobolev inequality, it follows that

‖φ‖L p1 (Rn) �
∥∥∥∥ |φ(x)|
1 + |x |4σ ∗ |x |n−2σ

∥∥∥∥
L p1 (Rn)

�
∥∥∥∥ |φ(x)|
1 + |x |4σ

∥∥∥∥
Lq1 (Rn)

� ‖φ‖L p0 (Rn)

∥∥∥∥ 1

1 + |x |4σ
∥∥∥∥
Lq0 (Rn)

,

where p0 = 2n
n−2σ = 2∗

σ , q0 ∈ ( n
2σ ,

2n
6σ−n ), q1 = p0q0

q0+p0
, and p1 = nq1

n−2σq1
∈

(p0,+∞). This means that φ ∈ L p(Rn) for all p ≥ p0. From (B.5) we conclude that
φ ∈ L∞(Rn), which finishes the proof of this case.

The lemma is proved. ��
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